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Summary

Introduction

Intense contact between gasses and liquids is an essential step in many (bio)
chemical and metallurgic processes amongst others. A device that is often
used for this step of the process is the bubble column. Bubble columns
have good mixing characteristics, resulting in good mass and heat transfer
qualities. In spite of their frequent application, fundamental knowledge on
the behaviour of bubble columns is still lacking. Their design and operation
is based on a large number of empirical correlations and scale-up continues to
be very complicated. In this thesis, a number of mathematical models have
been developed, improved and validated which can help obtain more detailed
knowledge on the important phenomena prevailing in gas-liquid dispersed
flows.

Modelling

With three different models, two levels of detail (i.e. length and time scales)
have been studied. The two most detailed models track the gas-liquid inter-
face and solve both issues of pressure and flow distribution of the gas and the
liquid phase. These models focus on the bubble dynamics at the scale of one
single bubble. In the first model, the Front Tracking algorithm, originating
from Unverdi and Tryggvason (1992) is applied, while the second uses the
Volume of Fluid (VoF ) algorithm originating from Youngs (1982, 1987).

The improvements that were made to the original models include, for the
Front Tracking model:
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• a new solver strategy for the pressure Poisson equation was included
to handle high density ratios up to ρl/ρg = 10000,

• a new, easier approach to the original surface tension model was devel-
oped and implemented,

• a re-triangulation algorithm reducing the total surface energy was in-
cluded,

• an integrated version of the Peskin smoothing function was embedded,

• the re-meshing algorithm to avoid failure due to extreme mesh defor-
mation was improved,

• the evaluation of the local viscosity was computed by harmonic weigh-
ing of the kinematic viscosity (Prosperetti, 2001).

and for the VoF model:

• a new surface tension model based on the tensile forces between adja-
cent elements was developed and implemented,

• a smoothening of the colour function over several cells, resulting in a
more stable calculation of the Pressure Poisson Equation(PPE) and a
more accurate prediction of the orientation of the interface elements.

• a flux correction algorithm was introduced

A second level of detail is modelled using a Eulerian-Lagrangian approach.
The Discrete Bubble Model (DBM ), describes the liquid phase flow field in
a complete bubble column and tracks all gas bubbles individually. A typical
number of bubbles can go up to about 105 bubbles. The gas bubbles tracked
by solving the Newtonian laws of motion. Closure relation were used to
account for all relevant forces acting on the bubbles. The model accounts for
two-way coupling and for the volume occupied by the gas bubbles. The DBM
model originally developed by Delnoij (1999) was refined by incorporating a
number of new elements. These include:

• the introduction of state of the art closure relations,
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• a second order accurate Barton flux scheme was introduced,

• the adoption of a LES turbulence model,

• incorporation of a full three dimensional collision algorithm.

Results

Both detailed models were programmed into a computer code and all indi-
vidual components of the codes were tested separately. Finally, a number of
simulations were performed and compared to experimental data taken from
the literature. The computed shape and bubble rise velocity agree well with
taken from the bubble diagram of Grace (1973). The terminal rise velocity
predicted by the models was also compared to velocities obtained from drag
closure relations that were taken from Clift et al. (1978). Both models pro-
duce reasonably accurate results for the bubble shape and the terminal rise
velocity. Although a number of small differences between the models were
found, none of the models showed to be significantly more accurate than the
others.

The modifications embedded in the DBM model were shown to be a signifi-
cant improvement to its application window and predictive capability. Using
the collision algorithm, gas fractions up to 40% can now be evaluated by the
model. The addition of the Barton flux scheme proved to have little influ-
ence on the dynamics of the bubble column. The introduction of the LES
model decreased the mean liquid velocity, as was expected. The new closure
relations resulted in a different distribution of the bubbles over the column.
Results from simulations ran with the complete model were compared to
experimental data obtained from Particle Image Velocimetry measurements
and showed a reasonable agreement.

Outlook

In future research, a number of improvements and extensions can be made.
First of all in the detailed models coalescence and break-up should be incor-
porated. For both models this a sub-grid scale model is needed to resolve
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the pressure and momentum equations between two interfaces. In addition
to this, Front Tracking would need, an algorithm for interface mesh recon-
struction. VoF will need a algorithm to allow more than one interface within
a control volume. For the DBM model new elements could be incorporation
of bubble induced turbulence, embedding an algorithm for bubbles with a
diameter exceeding the cell spacing and the incorporation of closure relations
that are valid in dense bubble swarms.



samenvatting

Inleiding

In veel (bio-)chemische en metallurgische processen speelt het contact tussen
gassen en vloeistoffen een belangrijke rol. Een apparaat dat hier vaak voor
wordt gebruikt is de bellenkolom. Bellenkolommen zijn met name geschikt de
vloeistoffase goed gemengd is waardoor een goede warmte- en stofoverdracht
plaatsvindt. Ondanks hun frequente toepassing is de fundamentele kennis
over het dynamische gedrag van bellenkolommen nog steeds beperkt. Het
ontwerp en het gebruik van deze apparaten is gebaseerd op een groot aantal
empirische correlaties en het opschalen of verkleinen is mede hierdoor niet
eenvoudig. In dit proefschrift zijn een aantal numerieke modellen ontwikkeld,
verbeterd en gevalideerd, die kunnen helpen om een meer gedetailleerd beeld
van de belangrijkste fenomenen te krijgen.

Modellering

Met behulp van drie verschillende modellen is onderzoek gedaan op twee ver-
schillende detail niveaus (zowel lengte als tijd). De twee meest gedetailleerde
modellen beschrijven de verplaatsing van het gas-vloeistof oppervlak en reke-
nen voor zowel de gas- als de vloeistoffase de druk en het snelheidsveld uit.
Met deze modellen is de dynamica van gasbellen op het niveau van een enkele
bel bestudeerd. Het eerste model gebruikt een Front Tracking methode die is
ontwikkeld door Unverdi and Tryggvason (1992). Het tweede model gebruikt
een Volume of Fluid(VoF ) methode van Youngs (1982, 1987).

Het Front Tracking model is op de volgende punten verbeterd:

vii
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• de pressure Poisson vergelijking wordt opgelost met een andere strategie
waardoor het mogelijk is dichtheidsverschillen tot een ratio van ρl/ρg =
10000 te modelleren.

• het algoritme waarmee de oppervlaktespanning wordt uitgerekend is
vernieuwd en vereenvoudigd.

• een re-triangulatie methode is gëıntroduceerd. Hiermee kan de totale
oppervlakte energie worden teruggebracht.

• ter voorkoming van fouten in het re-meshen zijn nieuwe re-meshing
methoden gëıntroduceerd.

• de locale viscositeit wordt berekend door middel van een harmonische
middeling van de kinematische viscositeit. (Prosperetti, 2001)

Het VoF model is op de volgende punten verbeterd:

• er is een nieuwe methode ontwikkeld om de oppervlaktespanning uit te
rekenen. Deze is gebaseerd op de trekkracht tussen twee naast elkaar
liggende oppervlakte elementen

• de kleurfunctie is ge-smoothed. Dit heeft ertoe geleid dat het oplossen
van de Pressure Poisson vergelijking (PPE) eenvoudiger is en dat de
oriëntatie van de oppervlakte-elementen beter wordt voorspeld.

• er is een correctie term ingevoerd die de fouten in de flux corrigeert.

Een tweede, minder gedetailleerd niveau, is gemodelleerd met een Euler-
Langrangiaanse methode. Het Discreet Bellen Model (DBM ), beschrijft de
stroming van de gas- en vloeistoffase in de gehele bellenkolom. Hierbij worden
alle gasbellen afzonderlijk gevolgd. Het aantal bellen dat tegelijk gevolgd
wordt ligt in de orde van 105 bellen. De verplaatsing van de bellen wordt
berekend door toepassing van de bewegingswetten van Newton. De krachten
die op de bellen werken worden bepaald met behulp van sluitingsrelaties. Het
model berekent ’two-way coupling’ en houdt rekening met het belvolume.
Het DBM model, dat oorspronkelijk door Rudman (1998) is ontwikkeld, is
verfijnd op de volgende punten:

• de introductie van moderne sluitingsrelaties.
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• een tweede orde accuraat Barton discretisatie schema voor de flux.

• een LES turbulentie model,

• en een volledig drie dimensionaal botsing algoritme.

Resultaten

De twee gedetailleerde modellen zijn in een computerprogramma geprogram-
meerd en alle onderdelen van deze programma’s zijn onafhankelijk getest.
Met dit computerprogramma zijn simulaties uitgevoerd, die zijn vergeleken
met experimentele data uit de literatuur. De bel vorm en dynamica zijn kwal-
itatief vergeleken met de gegevens uit het bellen diagram van Grace (1973) en
komen daarmee goed overeen. De terminal stijgsnelheden, die door de mod-
ellen werden voorspeld, zijn vergeleken met waarden verkregen met behulp
van sluitingsrelaties uit Clift et al. (1978). Ook hier geven beide modellen
vergelijkbare en redelijk betrouwbare resultaten. Ondanks dat een aantal
verschillen zijn aan te wijzen in de details van de simulatieresultaten, is geen
van beide modellen meer of minder accuraat dan de ander.

De aanpassingen aan het DBM model hebben aanzienlijke verbeteringen
laten zien. Door gebruik te maken van het botsings algoritme, kunnen nu gas-
fracties tot 40% worden gesimuleerd. De toevoeging van het Barton schema
had weinig invloed op de dynamica van de bellenkolom. Het LES model
verlaagde de gemiddelde vloeistofsnelheid, zoals verwacht. De nieuwe sluit-
ingsrelaties hadden tot gevolg dat de bellen op een andere manier over de
kolom verdeeld werden. Vergelijking van de simulaties met experimentele
data, die met Particle Image Velocimetry zijn verkregen laten een redelijk
overeenstemming zien.

Vooruitblik

In toekomstig onderzoek kunnen een aantal nieuwe elementen worden onder-
zocht. In de gedetailleerde modellen zou coalescentie en break-up kunnen
worden toegevoegd. Voor beide modellen is hiervoor een sub-grid model
nodig om de druk en impuls vergelijkingen op te lossen. Front Tracking zou



x

als extra nog een extra re-meshing algoritme nodig hebben. In VoF zou een
mogelijkheid moeten worden gezocht om meerdere interfaces in een cel te
construeren. Het DBM zou kan worden verbeterd door de introductie van
een model voor bel gëınduceerde turbulentie, een methode om bellen te be-
handelen die groter zijn dan een cel en het toevoegen van sluitingsrelaties die
gelden bij hoge gasfracties.
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Chapter 1

Introduction

1.1 Introduction

Bubbles rising in liquids have widespread applications. A well known exam-
ple of an apparatus in which this is encountered, is the bubble column. These
apparatus can be found in a wide range of process industries varying from
waste water treatment to various chemical processes. Bubble columns are
easy to construct and maintain because they do not include any mechanical
parts. Bubble columns have good heat and mass transfer characteristics due
to the very high mixing induced by the rising bubbles. A special class of bub-
ble columns can be found in metallurgical industry. Where in (bio-)chemical
reaction engineering intense gas-liquid contact is the main objective, in met-
allurgic processes rising bubbles are also applied to force a fluid velocity in
a specified direction.

To understand the importance of the parameters that influence the behaviour
of single bubbles, bubble plumes or the complete bubble column including
the liquid phase, numerous research projects have been (and still are being)
conducted. Experimental work has resulted in a wide variety of empirical
correlations that predict the dynamics of bubble columns, giving direction
to the design of currently applied devices. Recent developments in computer
speed open up the opportunity to develop detailed numerical models that can
be applied to study the importance of the proposed parameters. Once these
mathematical models are validated against analytical solutions and experi-

1
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mental data, they can help to predict the dynamic flow behaviour of bubble
columns. This is of special interest to those who want do design or operate
bubble columns that are hard to handle in experiments e.g. hazardous gasses
or liquids or liquid metals. A great advantage of computational models over
experimental work is the ease at which physical and geometrical parameters
can be modified towards optimisation: numerical experiments are increas-
ingly accepted as a substitute for expensive, hazardous and time consuming
laboratory programs.

Computational models can not include all scales (levels of details) simultan-
iously. Models that describe the phenomena in more detail generally consume
more computer capacity. The models in the present study operate on two
levels: either on the scale of one bubble or on the scale of a laboratory size
bubble column. The latter models describe the phenomena in less detail and
can be used to compute larger systems within a reasonable time. However,
they do not include the dynamics on bubble scale e.g. interface deformation.
To account in some way for details that are not resolved, so-called closure
relations are needed. Closure relations describe the independent forces acting
on each bubble.

The more detailed models, evaluating the dynamic behaviour of a single, or a
few bubbles and its surrounding liquid, can be used to check or even develop
closure relations required in the less detailed models.

To validate the above mentioned mathematical models, the results of simula-
tions run with these models were compared to experimental work from own
measurements, using an Particle Image Velocimetry method and an ultra
sound method. The results have also been compared to experimental data
reported in literature.

1.2 Bubble columns

Bubble columns can be operated in several regimes. If relative low gas fluxes
are applied, the columns operate in the homogeneous regime: small bubbles
of about equal size are uniformly distributed throughout the column, the
bubble velocity is below 0.3 m/s approximately. If higher gas fluxes are
applied the heterogeneous regime is entered. In this regime a wide range of
bubble diameters develop, breaks up and coalesce, the flow is unstable and is
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dominated by the larger bubbles. At even higher gas fluxes, the gas bubbles
grow so large that they occupy the whole width of the column resulting in an
alternation of liquid phase and gas phase passing through the column. These
alternating phases are called ’slugs’. Therefore, this regime is called the slug
flow regime. In this study only the first two regimes will be looked at.

1.3 Mathematical models

Over the last fifty years a number of approaches to fluid dynamics have been
developed. Starting off from one fluid model, it was tried to model two fluid
flows by multi fluid models in which the two (or more) phases are seen as
inter-penetrating liquids, the so called ”Euler-Euler” or multi-fluid models.

A more detailed approach is found in the Euler-Lagrangian models. In these
models the discrete elements (bubbles and/or particles) are traced individu-
ally by Newtonian laws of motion. These models are also known as Dis-
crete Bubble Models (DBM) (Delnoij, 1999) or Discrete Particle Models
(Hoomans, 2000).

A third even more detailed model is the class in which the flow field inside
and outside a bubble, the shape of the bubble and the interface dynamics
are evaluated in detail. Examples of models that can perform these kind of
computations are Volume of Fluid(VoF ), Front Tracking and Level-Set. On
even lower levels one could do Direct Numerical Simulation (DNS) or Lattice
Bolzman type of modelling.

In this thesis we focus in the VoF, Front Tracking and DBM. A final objective,
in combining these two levels of detail is that the outcome of the Front
Tracking and VoF models can be used as input for DBM . For example,
closure relations derived using one of the detailed models could be applied
in DBM .

1.4 Experimental validation

Validation of mathematical models was done by comparing the simulation
results to experimental data. Since a wide range of experimental data has
been reported in literature, only a few specialised experiments will be showed
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here.

In two different experimental setups a number of bubble column experiments
have been carried out. Two kinds of experiments can be distinguished.

• single bubble experiments

• bubble plume experiments

The single bubble experiments were done at the metallurgical laboratory
at CORUS RD&T, The Netherlands, involving liquid metals and using an
ultrasound technique. The other experiments were done at the laboratory of
the department of Chemical Engineering at Aalborg University in Esbjerg
(Denmark) using a dual camera Particle Image Velocimetry technique. The
latter experiments concerned plumes of air bubbles rising in water.

1.4.1 Single bubble experiments

In the range where no experimental data could be found in the literature,
specialised experiments were conducted to validate the detailed models. The
technique used to obtain this data is highly dependent on the liquid used.
Liquid metals such as liquid aluminium and liquid raw iron are hard to handle
because of the high temperatures involved. During this project CORUS-
RD&T developed an ultra-sound measurement technique that is capable of
detecting and following the position of a bubble interface in those materials.

1.4.2 Bubble plume experiments

The simulations run with the DBM are also compared to experiments. A
bubble plume was released through 49 nozzles in the bottom plate of a rect-
angular column. Particle Image Velocimetry (PIV ) was used to measure the
liquid flow in the vicinity of the plume. PIV was also applied to measure
the motion of the gas bubbles themselves.
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1.5 This thesis

In this study three mathematical models were developed and validated. In
chapter 2 and 3 development of a Front Tracking and a Volume of Fluid(VoF )
model are described. The governing equations will be given followed by a
description of the numerical implementation. Test of the newly incorporated
algorithms will be presented.

In chapter 4 simulation results from the Front Tracking model and the VoF
model are compared to a wide range of experimental data reported in the
literature and experimental data on argon bubbles rising in liquid aluminium
are considered. Both the Front Tracking model and the VoF model were
applied to determine their operating windows. The results of a number of
simulations, from both models, will be shown and compared to data from
literature. Measurements conducted with the ultrasound method will be
explained and the resulting data will be compared with simulation results
for the liquid-alumina system. Finally, the differences between the models
will be discussed.

In chapter 5 improvements to the Discrete Bubble Model originally developed
by Delnoij (1999) are described. The impact of the improvements will be
shown as well as a comparison of the improved model to PIV measurements
in water-air bubble columns.

In chapter 6, the conclusions of the previous chapters will be summarised
and an outlook to potential areas of development will be given.
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Chapter 2

Modelling single gas bubble
behaviour using a
Front Tracking model

Abstract

To model complex multi-fluid flows Unverdi and Tryggvason (1992) intro-
duced a Front Tracking method, where they combined the capabilities of both
Marker and Cell methods (MAC) (Harlow and Welch, 1965) and Volume of
Fluid methods (VoF ) (Nichols and Hirt, 1971), (Youngs, 1982) methods. In
Front Tracking methods an unstructured dynamic mesh is used to represent
the surface separating the two fluids (e.g. two different liquids or a liquid
and a gas). A one-field continuum approach is used to describe the velocity
fields of both fluids using an indicator function obtained from the position
of the interface-mesh, to compute the phase fractions. The Navier-Stokes
equations are solved on a fixed (Eulerian) grid.

In the present study, the front tracking method originally developed by Tryg-
gvason et al. (2001) has been modified by: applying a non-conservative form
of the Navier-Stokes equations enabling us to handle flow problems with very
large density ratios, an improved version of the Peskin smoothing function, a
different and more direct approach to calculate the surface tension force and
finally a new method for restructuring the interface mesh by minimisation of

7
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the surface energy.

The need for these improvements originated from the main objective of this
study, e.g. modelling gas-liquid flows with a high density ration and a high
surface tension, as encounterd in the processing of e.g. liquid metals. Our
Front Tracking method can solve these problems with density ratio as high
as ρl

ρg
= 104, provided that the number of Eulerian cells within the bubble (in

each direction) is about 20 to avoid significant losses of gas volume. Further-
more, the product of the surface tension (σ) and the curvature (κ) should not
exceed 800 Pa to avoid the development of parasitic currents. Finally sim-
ulation of bubbles with a large bubble diameter (deq = 0.05 m) will require
additional criteria to perform appropriate re-meshing the surface.

2.1 Introduction

Bubble columns are widely applied in chemical, biological, petrochemical and
metallurgical industries. Typical applications are encountered in processes
involving, among others, absorption, coal liquification and liquid metal refin-
ing. Bubble columns can be constructed with relative ease, have good heat
transfer characteristics and good mixing properties. In metallurgical pro-
cesses gas jets are applied in some cases to achieve mixing of liquid metals. In
the chemical industry mixing of fluids is commonly achieved using impellers,
however, these cannot be used in metallurgical processes because of the high
prevailing process temperatures (e.g. melting point of iron : 1808.15 K). De-
spite the widespread application of bubble columns, fundamental knowledge
on the fluid mechanical behaviour is still lacking and therefore the dynamic
behaviour is not fully understood.

Modelling bubble columns using different approaches and different strate-
gies can provide this kind of knowledge while the important phenomena can
be studied in detail. Industrial scale bubble columns are frequently sim-
ulated using Euler-Euler models. These models describe the two phases as
inter-penetrating fluids. Euler-Euler models do not capture the complex phe-
nomena on the scale of the bubbles, and bubble-liquid interactions are taken
into account via empirical closure relations. Often these closure relations
have been obtained from studies on single bubbles of spherical shape rising
in quiescent liquids. More complex systems have proven difficult to study
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because of experimental limitations. Therefor very little is known about the
behaviour of swarms of bubbles rising in clusters and their impact on the
overall flow patterns. Another example is the interaction between large and
small bubbles and their interaction with the liquid phase.

Detailed multi-phase flow models, like Front Tracking and Volume of Fluid
(VoF ) models can be used to evaluate and derive closure relations for drag,
lift and virtual mass forces, in more complex flows. For example Tomiyama
et al. (1995) reported some computational experiments to determine the lift
force acting on gas bubbles rising in linear shear fields using a modified
SOLA-VoF method. The numerical studies of Tomiyama (1998), Esmaeeli
and Tryggvason (1998) and Esmaeeli and Tryggvason (1999) give a good
indication of what can be achieved with these models.

In the present study a full three dimensional Front Tracking model was de-
veloped, that can be used to carry out the same kind of computational ex-
periments. A Front Tracking method was chosen because of its excellent
capability to calculate the surface tension forces, which significantly effects
the bubble shape and dynamics. Other methods, like the classical VoF, level
set and MAC models, do not allow for such an accurate and detailed rep-
resentation of the surface tension forces. At present most of these models
use the Continuum Surface Force-model (CSF ) first proposed by Brackbill
et al. (1992) and encounter problems to accurately evaluate the curvature
of the bubble interface. This, however, could lead to a misprediction of the
interface behaviour, resulting in a wrong bubble shape.

A disadvantage of the Front Tracking method is however, that the volume
of the bubble is not intrinsically exactly conserved. The gas volume of the
bubble slowly changes in time, caused by the method used to move the in-
terface, the applied filters and the re-meshing of the interface mesh. The
markers that span the surface elements are moved with their local veloci-
ties. These local marker velocities are interpolated from the velocity field on
the Eulerian grid. These interpolated velocities introduce minor small-scale
anisotropy (Unverdi and Tryggvason, 1992). By using a finer computational
grid this problem can however effectively be suppressed.

This chapter starts off with a description of the model equations, followed by
details on the numerical implementation of our front tracking method. Sub-
sequently a model verification is carried out to demonstrate the capabilities
of the model especially to asses the performance of the new elements added
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in the method. Special attention is given to the conservation of mass, the
interior gas bubble pressure, and the bubble shape. In Chapter 4 the capa-
bilities of the model to predict the bubble shape and its terminal rise velocity
are investigated. Also a comparison between the Front Tracking model with
the VoF model and experimental data will be reported in that chapter.

2.2 Model description

In this section the mathematical formulation of the model will be explained.
Every subsection covers one part of the model. The numerical implementa-
tion is given in the next section.

2.2.1 Flow problem

The equations governing the unsteady motion of two immisable viscous liq-
uids are given by the Navier-Stokes equations (equation 2.1). We use a one
fluid approach with local density and viscosity variation to account for the
separate phases. Because of this one fluid approach only three momentum
equations (to calculate the velocities in three dimensions) have to be solved,

∂ρu

∂t
+ ∇ · ρuu = −∇p + ∇ · µ

(

(∇u) + (∇u)T
)

+ ρg + Fst (2.1)

where u is the fluid velocity field, p the local pressure and ρ and µ represent
the local density and viscosity, respectively. Fst is the volumetric surface
tension force which only acts in the vicinity of the interface.

The Navier-Stokes equations are supplemented by the continuity equation
for incompressible flow:

∇ · u = 0 (2.2)

and the equations of state for the density (equation 2.4) and viscosity (equa-
tions 2.5 or 2.6).

An indicator function f (x) is used to indicate the local liquid fraction at
position x and time t. f (x) = 1 corresponds to the presence of the liquid
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phase only and f (x) = 0 to the presence of the gas phase only. In the
Front Tracking-model it is assumed that this indicator function is conserved
(travelling along its path, with the local velocity, the volume of a fluid element
remains constant):

Df (x)

Dt
= 0 (2.3)

However, in the Front Tracking method this conservation equation, which is
based on the assumption of incompressibility of both the liquid and the gas
phase, is not solved directly. The indicator function is evaluated from the
position of the interface(mesh) that is moved every time step.

From the f (x) the local density is evaluated as:

ρ = f (x) · ρl + (1 − f (x)) ρg = f (x) (ρl − ρg) + ρg (2.4)

For the evaluation of the local viscosity several different approaches have
been proposed. Often (e.g. Unverdi and Tryggvason (1992) and Rudman
(1998)) a simple linear weighing is used:

µ = f (x) (µl − µg) + µg (2.5)

Another approach was recently proposed by Prosperetti (2001). Based on
a detailed mathematical derivation Prosperetti showed that the momentum
transfer along the gas-liquid interface can be considered analogously to an
electrical current passing through two parallel resistances. Considering the
flow along an interface: In absence of normal viscous stresses and surface
tension forces, the pressure difference (analogue of voltage) along the inter-
face is equal on both sides of the interface, so that the two fluid streams
(analogous to currents) flow in parallel along the interface under the action
of the same pressure gradient. Thus the total resistance is a combination of
two resistances in parallel, which results in:

ρ

µ
= f (x)

(

ρl

µl

− ρg

µg

)

+
ρg

µg

(2.6)

The evaluation of the surface tension force will be explained in section 2.2.3.
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Figure 2.1: Example of an interface mesh.

2.2.2 Interface grid

To indicate the location of the interface, an unstructured mesh is generated
at the interface. The interface mesh consists of triangles that are connected
to each other and form a continuous surface (see e.g. figure 2.1). From this
mesh the indicator function f (x), on the Cartesian grid, is computed, which
is used in the evaluation of the local fluid properties needed to solve the
Navier-Stokes equations.

Once the flow field has been computed all the verticil of every triangular
surface element are moved with the local interpolated fluid velocity. This
results in a different shape of the bubble surface. By moving the verticil
the triangular surface elements become stretched. If an element becomes too
large, becomes too small or if its shape is deviating too far from that of an
equally sided triangle, then the surface elements are deleted or added to ad-
just their shape. Two points need special attention, firstly the displacement
of the verticil of each triangle and secondly the calculation of the value of
the indicator function. They will be discussed subsequently in more detail.

Displacement of the verticil

In the code two algorithms for moving the verticil have been programmed.
The first algorithm uses an 8 point stencil and the second one uses 64 grid
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points that are within a 2h radius of the vertex considered, h being the
Eulerian grid spacing.

The first algorithm is a simple volume weighed average of the velocity in the
eight surrounding grid points on the Eulerian staggered mesh. Because the
components of the velocity are not located at the same spatial coordinate
of the staggered grid, for each direction eight different grid points are taken
into account.

The second algorithm uses a numerical approximation of the Dirac-δ function
indicated by D (x − x̃), where x̃ is the coordinate of the vertex and x are
the coordinates of the nodes where the velocities on the staggered Cartesian
mesh are available.

ul =
∑

i

D (x − x̃)ui (2.7)

Using this interpolation method every component of the velocity is calculated
using a (2n)3 points stencil, where n = 2 is commonly used. The δ-function
used in the model is an integrated form of the Peskin function (Trapp and
Mortensen, 1993). Details on this integrated version of the Peskin function
can be found in appendix E.

Evaluation of the indicator function

For solving the Navier-Stokes equations information is needed on the local
density and viscosity in the Eulerian domain. These properties are evaluated
using equation 2.4 and equation 2.6 respectively. The problem focuses on
the evaluation of the indicator function f (x). In Front Tracking the value is
calculated from the interface information. The method used by Unverdi and
Tryggvason (1992) is also applied here. A function G (x) is evaluated using

G (x) =
∑

l

D (x − x̃l)nl∆sl (2.8)

where nl is the outwardly pointing normal on interface element l, ∆s is the
surface area of this element. The function G(x) is a vector that contains the
value of ∇f (x). The f(x) values could be computed from G (x), starting
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in a cell where f(x) is known (e.g. at the boundary) and evaluate f (x) in
the other cells by moving around and adding the value of G(x). The path
along the cells is arbitrary but could result in slightly different values for
certain grid cells depending on the selected path. An elegant way to overcome
this problem is via numerical differentiation. Using a second order accurate
centred difference the divergence (∇ · G) is calculated, thus calculating the
Laplacian of the indicator function, which is zero except near the interfaces.
To find the indicator function equation 2.9 is solved using an ICCG solver.

∇2f = ∇ · G (2.9)

Solving equation 2.9 in this manner gives minor undershoots and overshoots
in f (x) near the interface and therefore minor filtering is applied.

2.2.3 Surface tension force

The accurate calculation of the curvature of the interface is one of the main
advantages of the Front Tracking model. In this work a new approach is
adopted that is much easier to implement than the one used by Tryggvason
et al. (1998). In both approaches the ∂Fe force acting on a surface element
must be calculated.

∂Fe =
∫

∂A

σκndA (2.10)

The definition of the curvature κn = (n ×∇) × n is used to rewrite this
equation into

∂Fe = σ
∫

∂A

κndA = σ
∫

∂A

(n ×∇) × ndA = σ
∮

s

(t × n) ds (2.11)

where t is the counter clockwise unit tangent vector along the edges of the
element and s is the length of these tangent vectors. Tryggvason et al. (1998)
and Tryggvason (1999) construct a second order polynomial to compute the
length of the (curved) edge and compute (t× n) from the divergence of
this polynomial. In this work the cross product of t and n on the adjacent
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surface elements is calculated directly (see figure 2.2). Using this method
the construction of the polynomial can be avoided. Furthermore, the normal
to all the interfaces has already been calculated and the tangent vectors
can easily be constructed from the coordinates of the verticil of a surface
element. The amount of computational work needed to calculate the surface
tension force with this method is considerably less than a method using a
polynomial. The calculation results in three pull forces acting on the edges
of each element. Once the forces on all the edges of all triangles are known,
the forces acting at the position of the nodes of the staggered Cartesian grid
are then computed using:

(Fst)i,j,k =
∑

D (x − x̃) ∂Fe (2.12)

where D (x − x̃) is again a smooth δ-function, for which the integrated
Peskin-function is used.

n

Fe
element i

ti

Figure 2.2: Schematic representation of the calculation of the surface tension
force on element i using the tangent ti and the normal nj.

Since the surface tension force is only dependent on the length of the edge (|t|)
and the constant surface tension σ, the two forces that act on the common
edge of two adjacent elements are always exactly equal and have only a
different direction. Therefore there is no need to average these two forces, as
was done by Tryggvason (1999).
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Figure 2.3: Addition or removal of interface elements.

2.2.4 Restructuring of the interface mesh

When the surface of the bubble is moved, the surface mesh deforms. For
example, when a bubble rises through a liquid, the liquid surrounding this
bubble moves downwards. Also the flow inside the bubble near the interface
is directed downwards. Due to this flow pattern the elements on the top of
the bubble become stretched,, while the elements at the bottom of the bub-
ble shrink. The surface resolution at the top would eventually become low,
resulting in a less accurate description of the surface, while the resolution at
the bottom would become (unnecessary) high. Furthermore, a large number
of surface elements within the size of the Cartesian grid can also have an ad-
verse effect on the surface description, because the verticil are all moved with
an interpolated velocity that is not necessarily divergence free. Stretching
and shrinking of the surface elements could cause numerical problems after
some simulation time if too many elements are used.

In their codes Tryggvason (1999) uses a number of techniques to restructure
the surface mesh. Most of these were adopted in our study. The most evident
restructuring is the addition or removal of new surface elements if one of the
edges of an element becomes too long or too short. This process is illustrated
in figure 2.3 below.

A couple of elements is removed if their common edge is becoming too short
(e.g. edge length less than 0.3h). A new point is placed in between the two
verticil at the end of the short edge. Curvature is not taken into account
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because the merical errors introduced will be very small if the edge is small
enough.

If the edge between two adjacent elements becomes too large (e.g. edge length
exceeding 1.7h), then the two elements are split into four surface elements.
The needed new vertex is positioned in the middle of the long edge.

Rare cases

By applying this addition and removal of elements, in very rare cases an
interface mesh can develop artifacts. The most simple case of such an artifact
is that two elements become connected twice to each other as if they are
standing back to back. Since the volume between these elements is 0, they
do not influence the indicator function f (x), but because the angle between
these faces is 2π the surface tension force introduced by this pair is very large.
In this work, the two mesh elements are removed and the two elements that
are connected to either one of these artifact-elements are reconnected to each
other.

An other even more rare artifact as shown in figure 2.4 can develop. This
could become troublesome if, in a later stadium, an interface element closes
the gap that exist between the points 1-3-5. When this occures this could
result in a situation where four interface elements are connected to two points
along the same edge. As long as no further addition or removal of these
elements takes place there is no problem, but when one set is deleted the
common point with the other set of elements is deleted which will give rise
to numerical problems. To avoid this problem, two additional points are
inserted and the element pairs are rearranged resulting in a pair C-D and
F-B. By introducing two new points for one of those pairs at the position of
point 3 and 5 the mesh is computationally broken in two parts. Since the
two new points and the points 3 and 5 respectively are located at exactly the
same coordinate, they will always be translated with the same local velocity.
If one of the element pairs C-D of F-B is deleted the mesh will be broken in
two parts. This however, is still just a computational break-up without any
physical meaning, but it gives a good starting point for incorporating bubble
break-up in Front Tracking-codes. The results of such a rearrangement is
shown in figure 2.5. Recently Shin and Juric (2002) reported the use of
an mesh without connectivity where this kind of problems can be avoided.
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Their method generates a new mesh over the level contour f (x) = 0.5, once
every n time steps. They claim that their method can handle the break-up of
bubbles and coalescence of bubbles but without including a physical model
for these phenomena.

Energy minimalisation

In addition to this addition and removal of surface elements also the total
surface energy is minimised. This technique was taken from van Damme and
Alboul (1995). The idea behind this minimisation technique is that if the
total energy, that is related to the total curvature, of the surface is minimised,
also the interface area is minimised. This results in a nicely smooth interface.
The total surface energy is defined by equation 2.13

E =
∑

∀j

∑

i

αi li (2.13)

with j being the surface element number, i the edge number, α the angle
between normal vectors of two adjacent surface elements and l the length of
the edge joined by the two elements.

For every edge it is tried whether the energy of the total system decreases if
two adjacent elements are flipped as shown in figure 2.6. Only the topology of
the interface elements is changed. The marker points that span the interface
elements remain unaltered during this operation.

Figure 2.7 was taken from van Damme and Alboul (1995) and shows the
Schwartz’s polyhedral ’cylinder’ (figure 2.7(a)). This is a typical example
of a bad triangulation. In figure 2.7(b) the same ’cylinder’ is shown after
applying the minimalisation algorithm.

In the case of Front Tracking the local minimalisation of the local curvature
has a beneficial effect on the local surface tension force. By decreasing the
local curvature, also the local surface tension is decreased.

Since this is a very costly operation, it is performed only once every n time
steps where n typically equals 1000.
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Figure 2.4: Extreme interface problem. Element A is connected to the points
1-2-3, B to 3-4-5, C to 1-2-5, D to 3-5-6, E to 2-3-4 and F to 2-5 and 7. When
the edge 2-3 becomes too short, the elements A and E are deleted, points 2
and 3 put to one new point 8 in between 2 and 3. The elements pairs D-B
and C-F share edge 8-5 but are not connected to each other. This could lead
to problems in further mesh restructuring.
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Figure 2.5: Extreme interface problem: Mesh after recombination. The ele-
ment pairs C-D and F-B which used to have edge 3-8 as a joining edge have
now become detached.
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Figure 2.6: Element flip.

Figure 2.7: Schwartz’s polyhedral ’cylinder’ before (a) and after (b) applying
the minimalisation algorithm. Figures were taken from van Damme and
Alboul (1995).
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2.3 Numerical method

In figure 2.8 a schematic overview of the computational steps in our computer
code is given.

indicator field
density
viscosity
surface tension forces

Solve
Navier−Stokes

Track 
Interface

if t < t_end

Initialisation

Finalize

Compute :

Figure 2.8: Computational flow dia-
gram of our Front Tracking code.

During the initialisation step the
fluid velocities are set to 0 m/s, the
pressure is initialised accordingly to
the hydrostatic profile, and the ini-
tial interface mesh is constructed.
From this interface mesh the surface
tension forces are computed and the
indicator field is calculated. From
the indicator field the local density
and viscosity are evaluated.

In the main loop firstly the Navier-
Stokes equations are solved yield-
ing the flow and pressure fields.
Secondly, the interface nodes are
tracked with the local interpolated
fluid velocity which gives the new
position of the interface nodes and
implicitly the new bubble shape. Fi-
nally the new surface tension forces,
indicator field and density and vis-
cosity fields are calculated. Subse-
quently the time is advanced and the
computational steps are repeated
until the final time step.

In order to be able to handle very
large density variations as often en-
countered in gas-liquid flows, the
Navier-Stokes equations (2.1) are

rewritten in their non-conservative form using the continuity equation given
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by 2.2.

ρ

(

∂u

∂t
+ ∇ · uu

)

= −∇p + ∇ · µ
(

(∇u) + (∇u)T
)

+ ρg + Fst (2.14)

Typically the error introduced by assumption is below 0.5% and is therefore
accepted.

The convection terms of the Navier-Stokes equation are computed using the
Barton scheme, a second order flux-delimited scheme Centrella and Wilson
(1984), Harley et al. (1984), Goldschmidt (2001) while the diffusive terms
are computed using a standard second order icentral finite difference repre-
sentation.

The Navier-Stokes equations are solved on a staggered rectangular three-
dimensional grid using a finite-volume method, in combination with the SIM-
PLE algorithm (Patankar, 1980). The pressure Poisson equation (PPE) is
solved by an Incomplete Choleski Conjugate Gradient (ICCG) algorithm.

No slip boundary conditions are implemented for all walls except for the top
of the computational domain, where a free-slip boundary condition is applied.
The computational domain is shifted in such a way that the centre of mass
of the total gas content is kept more or less in the centre of the domain. This
reduces the number of Eulerian computational cells required to simulate a
fast rising gas bubble.

In order to avoid numerical instabilities due to very steep gradients in the
density or the viscosity, the interface is extended over four Eulerian grid cells.
In this transition zone the fluid properties change smoothly from one side of
the interface to the other. This is accomplished by smoothing of f (x) using
an integrated Peskin function that is explained in appendix E.

2.4 Model verification

A number of simulations were carried out to check the model performance.
The following aspects were investigated:

• Influence of the number of surface elements on the degree of mass con-
servation.
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• Influence of the grid size of the Eulerian mesh on the bubble volume
conservation and bubble rise velocity.

• Verification of the surface tension model by comparing the interior ex-
cess pressure of a spherical bubble with the analytical solution.

• Influence of Prosperetti’s viscosity interpolation on the magnitude of
the parasitic currents close to the bubble surface.

• Standard advection test in an artificial flow field.

• Model stability test.

• Influence of the energy minimalisation procedure on the bubble shape
and bubble volume conservation.

In the following sections the results of these investigations will be reported.

2.4.1 Number of surface elements

The size of the interface mesh elements was varied to investigate the influence
on the bubble behaviour. A 3.4 mm air bubble was released in a 1 cm3

container filled with water using 20×20×20 Eulerian grid cells. The number
of interface elements is related to the Eulerian grid size. Two computations
were performed using an edge length of 2

3
× hmin and 1

3
× hmin, where hmin

is the minimum cell spacing of an Eulerian grid cell. After 0.01 s simulated
time the maximum variation in the relative gas loss were 0.003% and 0.002%
respectively. The finer mesh produced only a slightly better representation
of the bubble surface resulting in a somewhat lower deviation from the initial
volume of the spherical bubble. The computational time for using the finer
mesh is however about 2.5 times as high. Additional calculations were carried
out to optimise the desired accuracy in mass conservation and the required
computational effort, using an edge length of 2

3
×hmin for the interface mesh.

2.4.2 Grid size of the Eulerian mesh

The influence of the mesh size of the Eulerian grid was investigated in order
to determine the minimum number of nodes required to resolve the flow
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Table 2.1: Relative gas loss (in %) for a 3.4 mm diameter air bubble rising in
a 1 cm3 container filled with water over a time period of 0.1 s using different
numbers of Eulerian grid cells. Computing time is the time needed on a
single CPU 1800 MHz AMD computer. Clift et al. (1978) report a terminal
rise velocity Reynolds number of about 80.

number of grid
cells in x, y and
z direction

terminal
rise velocity
Reynolds
number

relative gas
loss [%]

computing time [s]

20 × 20 × 20 74 −13.5 9 · 103

40 × 40 × 40 85 −4.6 103 · 103

60 × 60 × 60 85 −2.0 700 · 103

80 × 80 × 80 85 −0.9 1400 · 103

inside the bubble, the surrounding fluid and the interface with reasonable
accuracy. Model calculation results for a 3.4 mm diameter air bubble rising
in a 1 cm3 container filled with water, using different numbers of grid cells,
are listed in table 2.1.

Based on these results it is concluded that a 60×60×60 Eulerian grid results
in acceptable low gas volume losses and acceptable computing times.

2.4.3 Surface tension model verification

The pressure inside a bubble is higher than the pressure in the surrounding
liquid due to the surface tension forces acting on the surface. For spherical
bubbles the excess pressure satisfies the Youngs-Laplace equation:

∆p =
2

r
σ (2.15)

In figure 2.9 the pressure distribution inside the gas bubble and the surround-
ing liquid calculated by the model is compared to the analytical solution. The
diameter deq is the equivalent bubble diameter. The grid spacing is relative
to the bubble diameter.
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Figure 2.9: Pressure distribution across the column in a horizontal plane
through the centre of a spherical air bubble in water for different bubble
diameters keeping the number of grid cells constant at 60 × 60 × 60. (a)
deq = 2.5 mm, (b) deq = 5 mm and (c) deq = 10 mm.
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Figure 2.10: Comparison of interface viscosity interpolation methods on the
effective viscosity for air-water systems

From this figure it can be concluded that the model is very well capable of
computing the pressure distribution for a range of practically relevant bubble
diameters. It is also concluded that the surface tension model computes the
surface tension forces with good accuracy.

2.4.4 Interface viscosity interpolation

The harmonic averaging of the kinematic viscosity as recently proposed by
Prosperetti (2001)(equation 2.6) is compared with the conventional linear
weighing (equation 2.5) of the dynamic viscosity. In figure 2.10 the effective
viscosity for air water mixtures is given as a function of the liquid fraction.
The figure clearly indicates that the effective viscosity near the interface (f =
0.5) with the new approach is much higher than with the linear weighing.

If an appropriate smoothing of the indicator function is applied, Prosperetti’s
approach pushes the high shear region further into the gas phase. This
will decrease the velocity near the interface. This is indeed observed in the
simulation results (see figure 2.11).

The velocities at the bubble interface (inside as well as outside) are slightly
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t=0.0070[s]  xz-plane at 0.50 [-] length comparible to 0.5 m/s

(a)

t=0.0070[s]  xz-plane at 0.50 [-] length comparible to 0.5 m/s

(b)

Figure 2.11: Computed velocity field at a vertical plane through the centre
of a 8 mm air bubble in an aquatious sugar solution. Linear weighing (a),
Prosperetti’s weighing (b), Eulerian grid: 60×60×60 cells, ρl = 1230 kg/m3,
µl = 0.0237 Pa.s, σ = 0.0759 N/m, ρg = 1.2 kg/m3.
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higher in the case of linear weighing. This can only be observed from compar-
ing the numerical data in detail. On the largest vector a difference of about
5% can be found. Although the effect of these approaches differs slightly,
it is expected that Prosperetti’s approach gives a more stable computation.
Because of this and because of the more fundamental basis of this approach,
for all further computations Prosperetti’s approach will be used.

2.4.5 Standard advection test

Rider and Kothe (1998) proposed a flux test for VoF models, consisting
of positioning a gas bubble with a relative radius of 0.15, in a box with
unit length imposing a given constant velocity field, for which the stream
function Ψ is given below. The initial location of the centre of the bubble is
(0.50, 0.75, 0.50).

Ψ =
1

π
sin2 (πx) sin2 (πy) (2.16)

where ux = −∂Ψ

∂y
, uy = ∂Ψ

∂x
and uz = 0.

This test was also applied to the developed Front Tracking code to compare
the initial shape of the bubble in this artificial flow field with the shape
obtained when the flow is advanced for n time steps and then reversed for
the same number of time steps. In figure 2.12 the shape of the bubble is
presented at the beginning, halfway and in the final situation. The flow was
advanced for 1 second (n = 1000).

The position of the centre of mass of the bubble in the final situation is
exactly equal to the initial location of the bubble, from which it can be
concluded that the translation of the verticil and the regridding procedures
were implemented correctly. A closer observation of the results reveals that
the surface mesh has been deformed, resulting in a somewhat more irregular
surface compared with the initial surface mesh. This was to be expected
because the criteria for addition and removal of surface elements are not
completely reversible. Elements are added if an edge of an element is longer
than 1.7 times the grid size of the Eulerian grid and are removed if an edge
is shorter than 0.3 times this length.
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(a) (b) (c)

Figure 2.12: Results for the standard advection test. Initial configuration
(a), half time result (b) and final result (c), Eulerian grid : 30× 30× 30, the
flow is advanced for 1 s and then reversed for 1 s (1000 time steps).

2.4.6 Stability test

A computational experiment was carried out to find out whether the code
runs stable also for longer simulation times. In figure 2.13 the result is shown.
In table 2.2 the physical data for this computation are given. A low density
ratio was chosen to reduce the required calculation time.

The resulting Re number should be about 80 according to the Grace diagram
(Clift et al., 1978). The Re number resulting from the stationary rise velocity
of the bubble is Re = 30. This relative large difference in Reynolds number
is probably due to the high gas density and viscosity, resulting in less internal
circulation in the bubble. The loss of gas-volume is about 0.25% over the
entire simulation time.

2.4.7 Energy minimalisation

Energy minimalisation effects the Front Tracking model at two points, the
actual value of the indicator function and the local curvature.

The actual values of the indicator function f (x) depend strongly on the
exact structure of the interface mesh. In figure 2.14 the relative gas loss for
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(a) (b)

(c) (d)

Figure 2.13: Result of the stability test using Front Tracking. After (a) 0.0 s,
(b) 0.2 s, (c) 0.4 s and (d) 0.6 s. Physical data are listed in table 2.2. The
dimensions of the computational domain are 0.05 m × 0.05 × 0.10 m.
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Table 2.2: Physical data for the long time simulation.

equivalent bubble diameter deq 0.025 m
dimensionless numbers log (Mo) −3.7

Eo 12.3
liquid phase ρ 1000 kg/m3

µ 0.1 Pa.s
gas phase ρ 800 kg/m3

µ 0.1 Pa.s
σ 0.1 N/m

column number of cells 50 × 50 × 100
dimensions 0.05 × 0.05 × 0.1 m3

a simulation with and without incorporation of the energy minimalisation
algorithm is shown. Because of the large number of interface elements it is not
directly clear which elements have been swapped, but because the coordinates
of the marker points involved are not changed, the global topology of the
bubble interface does not change much. From the figure it is clear that the
minimalisation has a considarable impact on the indicator function f (x),
once the bubbles start to deform (t > 0.04 s). The global surface energy
decreased about 5 %.

2.5 Conclusion

A full three-dimensional Front Tracking code was developed following Un-
verdi and Tryggvason (1992), with a capability to solve flow problems with
a very large density ratio. Furthermore a new method for evaluating the
surface tension force as well as an improved version of the Peskin smoothing
function and an energy minimalisation algorithm were embedded in the code.
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Figure 2.14: Relative gas loss as function of time for a simulation with
and without the energy minimalisation algorithm of van Damme and Al-
boul (1995). Bubble diamteter deq = 8 mm Dimensionless numbers Eö= 10,
log (Mo) = −5.24.
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2.5.1 Verification

In a number of test cases all parts of the implementation were tested and it
was concluded that

• The number of nodes in the unstructured mesh that represents the
interface has almost no effect on the relative gas losses for spherical
and ellipsoidal bubble shape, but it does have a large effect on the
computational time required. Taking surface elements with an initial
edge length of 2

3
min (hx, hy, hz) seems optimal.

• By varying the Eulerian grid size, compared to the bubble size, it was
found that at least 20 Eulerian cells contained in the bubble in each
spatial direction should be selected to obtain a reasonable accuracy.
The required computational time varies almost linearly with the num-
ber of Eulerian nodes, but the difference in relative gas losses between
a 60 × 60 × 60 and 80 × 80 × 80 grid is relatively small, so the former
grid seems sufficiently accurate.

• The new surface model is well capable of predicting the surface tension
forces as can be concluded from the almost exact agreement with the
analytical solution for the excess pressure inside a spherical bubble.
Since this method needs less computational work, it is preferred over
the method proposed by Tryggvason et al. (1998).

• The viscosity is evaluated using the scheme proposed by Prosperetti
(2001). This method has a sound physical basis and is therefore pre-
ferred.

• The code gave good results for a deformation test similar to the one
carried out by Rider and Kothe (1998) for VoF -models. The deforma-
tion test gives confidence in the correct implementation of the Front
Tracking algorithm.

• The code has been tested for a problem running over a large number
of time steps demonstrating the numerical stability of the code.

• The energy minimalisation has shown to have a considerable impact
on the computed relative bubble volume wich implies that the actual
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stucture of the interface is very important to the final outcome of the
simulations.

Overall it is concluded that the model is fully functional and has a number
of improvements over the existing codes.

In chapter 4 the computational results of the presented Front Tracking model
are shown. The the bubble shape and the rise velocity will be compared
to experimental data reported in literature and to data from ultra sound
measurements.
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Chapter 3

Modelling single gas bubble
behaviour using the Volume of
Fluid method

Abstract

Volume of Fluid (VoF ) models were introduced in the 1970s by DeBar (1974),
Nichols and Hirt (1975), Hirt and Nichols (1981) and Noh and Woodward
(1976). VoF models reconstruct an interface from the local gas or liquid
fraction distribution. Once the interface is computed the fluxes through the
cell faces for each fluid phase can be calculated very accurately, where mass
conservationi is inherently assured. The velocity field is calculated from the
Navier-Stokes equations on a staggered Cartesian mesh using a one fluid
formulation, where the local density and viscosity are evaluated from the
local liquid fraction distribution. In this study a three dimensional Youngs
VoF algorithm was implemented in a computer code to calculate the interface
fluxes.

New elements that were included are

• a new surface tension model based on the concepts derived from Front
Tracking models,

• smoothing of the indicator function for the computation of the normal

37
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to the interface (required for the evaluation of the fluxes and the surface
tension forces) and

• a correction for non-divergence free flow fields (arising from very small
residuals in the iterative solution of the pressure Poisson equation
(PPE)).

The simulation results show that the new algorithm for evaluating the surface
tension does predict the internal excess pressure very accurateily. The repre-
sentation has improved significantly by using a smoothed indicator function
in the computation of the normal to the interface and the inon-zero diver-
gence correction shows indeed a very rigorous conservation of mass that can-
cels exactly the numerical error introduced by solving the Pressure Poisson
Equation (PPE). These three improvements enable us to perform simulations
involving small bubbles or liquids with a high surface tension as compared
to the conventional approach (surface tension evaluated by the CSF model
(Brackbill et al., 1992), no smoothing of the indicator function for computing
the normal to the interface and no inon-zero divergence correction).

Simulations were carried out to verify the new computational methodologies
and the predicted bubble shape and bubble dynamics. The flux computation
performs well, the code runs stable over long (simulation) times and the new
surface tension model gives a very accurate prediction of the excess pressure
inside a spherical bubble.

3.1 Introduction

Gas-liquid two phase flow is encountered in a large variety of process equip-
ment, such as in bubble columns and distillation columns. Since these pieces
of process equipment are very frequently applied, an optimal design and
operation is of great (economic) interest. Since the advent of chemical en-
gineering, the design of various kinds of equipment was based on extensive
experimentation and usage of empirical correlations. Due to advances in
computational methods and the increased computer capacity, computer sim-
ulation of complex multi fluid flows has come within reach. The usage of
validated computer models can significantly reduce the extent and cost of re-
quired experimental work. However, fundamental knowledge that is needed
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for the optimal design of process equipment is still lacking. Questions that
need to be answered demand for very detailed experiments. Since these ex-
periments are often difficult if not impossible to conduct, there is a large
interest in simulation tools that can provide this detailed information and
insight. In this study such a detailed model was developed for gas-liquid two
phase-flow.

It was decided to develop a VoF model because of its very good inherent mass
conservation. A known drawback of this model is the poor prediction of the
surface tension force by the CSF method (Zaleski, 1999), especially at points
where the interface has a strong curvature compared to the computational
mesh size. In this chapter a completely new surface tension method, that
ovecomes this limitation, will be presented.

Since the introduction of the VoF method numerous researchers have worked
in this field. Rider and Kothe (1998) give an excellent overview of the history,
all the ’flavours’ and the advances in VoF that were made over the last three
decades.

Yet the essence of all these VoF models is the same. From a known spa-
tial liquid fraction distribution, f (x), in a given computational domain the
normal n to the interface has to be determined. One of the most often used
methods is given below, although Rider and Kothe (1998) describe a number
of alternative methods.

n =
∇f (x)

|∇f (x)| (3.1)

From the normal n and the liquid fraction f (x) an interface is constructed
in every computational cell. In our computer code, the model originally pro-
posed by Youngs (1982) (see also Youngs (1987) and Rudman (1997)) has
been used. This model was preferred because of its relatively simple im-
plementation e.g. compared to higher order methods like for example the
ELVIRA model from Zaleski (1999) and because of its superior performance
compared to the classical model proposed by Nichols and Hirt (1975). Rud-
man (1997) and Zaleski (1999) have presented good overviews of the accuracy
of the different VoF implementations.

Once the interface is reconstructed the flux of material through the faces
of the Eulerian cells can be calculated using the computed flow field. From
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these fluxes the liquid fraction at the new time step can be evaluated. At
the new time step the flow field is solved again.

In our implementation of VoF, two models for the surface tension force have
been included and mutually compared. One model is the well-known CSF
model from Brackbill et al. (1992), the second model is a new model that is
based on the surface tension model used by Bunner and Tryggvason (1997) in
their Front Tracking codes. Both models use a 27 points stencil to calculate
the normal n. The CSF method also requires the derivatives of the normal
which makes this method very sensitive to minor numerical errors in the
liquid fraction field. As a consequence the curvature can only be calculated
accurately if the curvature is relatively small compared to the mesh size. The
new model calculates the surface tension forces on the edges of the surface
elements using the normal vectors to the adjacent surface elements. This
enables an accurate computation of the surface tension forces over a large
range of curvatures.

Rider and Kothe (1998) have demonstrated that direct application of equa-
tion 3.1 to the indicator field could lead to a mis-prediction of this normal.
This conclusion has been confirmed in our study. Other methods given by
Rider and Kothe (1998) use a complicated iterative method and are therefore
not considered. We propose a model that evaluates the normal to the inter-
face from a smoothed indicator function, denoted by f̃ (x). The smoothing
function proposed here is an integrated Peskin function.

The PPE equation is solved using an iterative numerical solution alorithm.
This introduces small numerical erros that cause a non-zero divergence of the
flow field. The correction proposed by Kothe et al. (1994) was implemented
in our code to minimize the effect of this non-zero divergence.

In this chapter, the model equations and the numerical method will be briefly
reviewed, followed by a detailed description of the construction of the inter-
face and the evaluation of the surface tension forces.

A model verification has been conducted, which provides information on the
algorithms and the quality of the model predictions.

In chapter 4 the presented VoF model will be compared to experimental
data ontained from literature as wel as to experimental data obtained from
ultrasound measurements. In this chapter also the results from simulations
with this VoF code will be compared to simulation results the Front Tracking
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code as described in the chapter 2.

3.2 Model equations

In this section the model equations will be presented.

3.2.1 Flow problem

A one-fluid formulation is used to solve the flow field. An indicator function
f (x) is used to indicate the local volume fraction of the two phases. Here
f (x) = 1 indicates the liquid phase and f (x) = 0 the gas phase. The VoF
model insures that f (x) is conserved where f (x) obeys:

Df (x)

Dt
= 0 (3.2)

The local density and viscosity are evaluated as a function of f (x), according
to

ρ = f (x) (ρl − ρg) + ρg (3.3)

or

ρ

µ
= f (x)

(

ρl

µl

− ρg

µg

)

+
ρg

µg

(3.4)

The harmonic averaging of the kinematic viscosity was proposed by Pros-
peretti (2001) and can be interpreted as an analogy of parallel electrical
resistances. In section 2.2.1 this is explained in more detail.

The Navier-Stokes equations describe the motion of the unsteady, viscous,
incompressible, immiscible two-fluid flow system.

∂ρu

∂t
+ ∇ · ρuu = −∇p + ∇ · µ

(

(∇u) + (∇u)T
)

+ ρg + Fst (3.5)
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Figure 3.1: Interface element type 1 and 2.

Here u is the velocity field, ρ and µ are the density and viscosity fields,
respectively and Fst is the surface tension force which only acts in the vicinity
of the interface.

The Navier-Stokes equations are supplemented by the incompressibility con-
dition

∇ · u = 0 (3.6)

and the equations of state for the density and viscosity.

3.2.2 Interface reconstruction and flux calculations

The key issue in VoF methods is the reconstruction of the interface. In this
section the methods used in our implementation will be discussed.

Youngs (1987) reported that, if appropriate rotation and transformations are
applied to the interface normal n, the number of possible interface element
types that need to be used to construct a piece-wise linear interface in a three
dimensional space, is essentially five. These types are given in figures 3.1 to
3.3.

To determine what type of interface element is present in a computational
cell a few steps are taken.

• The first step is the calculation of the normal to the interface using
equation 3.7. Note that the smoothed indicator function f̃ (x) is used
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Figure 3.2: Interface element type 3 and 4.
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Figure 3.3: Interface element type 5.
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here instead of the normal indicator function f (x), as used in equation
3.1.

n =
∇f̃ (x)
∣

∣

∣∇f̃ (x)
∣

∣

∣

(3.7)

Using the normal computed from the smoothed indicator function the
adjacent surface elements are much better connected.

• The numerical procedure assumes f (x) ≤ 1

2
. If a cell is filled for

more than 50% with liquid, the liquid and gas phase are temporarily
exchanged in the numerical procedure. Once the fluxes through the
interfaces are computed the real fluxes are calculated by reverting the
gas and the liquid flux.

• The last step is calculation of a number of limiting criteria from which
the interface type can be determined. These criteria are summarised
in table 3.1. More details can be found in appendix A.

Once the interface elements and the velocities on the cell boundaries are
known, the fractions that will be fluxed to the neighbouring cells can be
computed. Due to the small time step a split advection is sufficiently accurate
and is therefore used. In figure 3.4 a two-dimensional example of the flux
calculation is summarised. The equations needed to compute the fluxes in a
three dimensional domain are given in appendix A.

Flux correction

The flow solver applies an iterative method to solve the PPE and conse-
quently small numerical deviations from the continuity equation will be pro-
duced. Since equation 3.2 is not solved directly but via the fluxes computed
from the interface and flow field, this leads to a small mis-prediction of the
fluxes computed by the VoF algorithm.The algorithm does not account for
the right hand side term given in equation 3.8, which is an extended formu-
lation of 3.2. This was firstly reported by Rider and Kothe (1998).

∂f

∂t
+ ∇ · (uf) = f∇ · u (3.8)
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Table 3.1: Selection criteria for the five surface element types. n0 =
min (nx, ny, nz), n1 = median (nx, ny, nx) and n2 = max (nx, ny, nz).

type criterion
1 6fn0n1n2 ≤ n0

3

2 n0
3 < 6n0n1n2f ≤ n1

3 − (n1 − n0)
3

3

n0 + n1 ≥ n2

and

n1
3 − (n1 − n0)

3 < 6fn0n1n2 ≤ n2
3 − (n2 − n0)

3 − (n2 − n1)
3

or
n0 + n1 < n2

and

n1
3 − (n1 − n0)

3 < 6fn0n1n2 ≤ (n0 + n1)
3 − n0

3 − n1
3

4

n0 + n1 ≥ n2

and

n2
3 − (n2 − n0)

3 − (n2 − n1)
3 < 6fn0n1n2

5
n0 + n1 ≤ n2

and

(n0 + n1)
3 − n0

3 − n1
3 < 6fn0n1n2
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Figure 3.4: Two dimensional flux example. The left figure shows the original
surface and velocity field. The middle figure shows the liquid phase that
is being fluxed and the right figure shows the final configuration after the
phases fluxed. Element A is fluxed to cell 2, B to cell 1, D to cell 4 and E to
cell 2. Due to the split advection scheme block C is fluxed twice once to cell
1 and once to cell 4.
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In the present code a non-zero divergence correction is applied. From a
detailed analysis of the flow-field and the f -field data it can be concluded
that this correction indeed exactly cancels all numerical errors introduced by
the iterative matrix solver.

3.2.3 Treatment of the discontinuety at the interface

In most VoF models large gradients in the indicator function exist, causing
numerical instabilities when solving the Navier-Stokes equations with a sur-
face tension source term. Firstly, since the density and viscosity depend on
the indicator function also these variables can have very steep gradients. Fur-
thermore, the surface tension force is acting at the position of the interface
as well. This induces a large momentum source term in the Navier-Stokes
equations, resulting in very high velocities of the less dense phase close to
the interface. High fluid velocities result in a low pressure as can be seen in
figure 3.5.

In their RIPPLE-code, Kothe et al. (1994) proposed to use equation 3.9 to
push the action of the surface tension into the liquid phase. By multiplying
the computed surface tension force by 2f (x) the action of this force is reduced
at the gas phase side of the interface while it is doubled on the liquid side.
Since the density on the liquid side is higher the momentum is reduced.

Fst = 2f (x) Fst (3.9)

This function was applied in the same simulation as mentioned before. The
resulting pressure distribution is given in the second graph of figure 3.5. It
succeeds in minimising the pressure undershoot but the excesspressure inside
the bubble, is almost half the excesspressure that should be expected from
the analytical solution. This method is therefore not preferred.

A new method that is introduced here involves the use of a smoothed indi-
cator function f̃ (x). This f̃ (x) is computed from the following expression:

f̃ (x) =
∑

D (x − x̃) f (x) (3.10)

where the smoothing function D (x − x̃) is an integrated version of the one
given by Peskin (1977). This function is explained in detail in in appendix
E.
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Figure 3.5: Pressure profile for CSF model without any correction (a) and
with RIPPLE correction (b) and with smoothing function (c).
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If the local density and viscosity are evaluated from f̃ (x) the gradients vary
smoothly over the interface. The result obtained after applying this method
is shown in the last graph of figure 3.5.

The excesspressure inside the bubble is predicted very well and the low pres-
sure regions have vanished. Therefore this method has been used for all
computations reported in this chapter.

Another advantage of this smoothed indicator function f̃ (x) is that, when
the normal computed from this smoothe is used foa determlining the surface
element types, the connection of adjacent interface elements is much better
than by making use of the non-smoothed indicator function f (x). However
for the computation of the volume beneath the surface in both cases the
non-smoothed f (x) is used.

3.2.4 Surface tension force

In many VoF models, e.g. Rudman (1997) and Delnoij (1999) the surface
tension force is computed using the CSF -model of Brackbill et al. (1992).
This model uses a 3 × 3 × 3 (in three dimensions) stencil for computing the
normal n to the interface as well as ∇n. Both are used for the calculation
of the curvature, which is in its turn used for the calculation of the surface
tension force. The numerical differentiation implicitly used in this procedure
makes the evaluation of the curvature very sensitive to mis-predictions of
n. Therefore, a new surface tension force method has been developed and
implemented that avoids the calculation of this derivative.

In this section first a brief description of the CSF model is given, followed by
the introduction of the new model, that is inspired on the approach reported
in chapter 2.

CSF-surface tension model

The CSF -model calculates the surface tension force according to the following
expression

Fst = σκ (x)
∇f (x)

[f ]
(3.11)
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where, κ is the curvature and [f ] the jump in the indicator function. In the
case of VoF [f ] = 1 when going from one phase to the other phase. The
curvature is calculated from

κ =
1

|n|

[(

n

|n| · ∇
)

|n| − (∇ · n)

]

(3.12)

where n is the normal to the interface that is computed as:

n = ∇f (x) (3.13)

The main disadvantage of this method is that the derivative of n must be cal-
culated numerically from the gradient of f (x) or f̃ (x), thus ∇n = ∇2f (x).

New surface tension model

Motivation The development of the new surface tension force model was
initiated by the following two observations. Firstly VoF models conserve
mass in a very rigorous manner compared to Front Tracking models (see
figure 3.6). Secondly, the treatment of the surface tension in Front Tracking
models is much better than in the conventional CSF model used in most VoF
codes. Two major advantages of the Front Tracking approach to calculate
the surface tension force are:

• Front Tracking is capable of handling highly curved interfaces.

• Front Tracking produces significantly smaller parasitic currents.

A new surface tension force model is developed incorporating the surface
tension force model as used in Front Tracking models into the VoF model
to get the best of both. The new surface tension force model avoids the
calculation of the derivatives of n.
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Figure 3.6: Conservation of mass in Front Tracking and VoF. These data
were taken from the stability tests. The decrease in relative gas volume for
the VoF calculation is in the order of 10−5 %.

Model The proposed surface tension force model calculates the surface
tension forces directly from the interfacial pull forces acting between neigh-
bouring surface elements. These forces are calculated using the counter
clockwise tangent vectors along the edges of the five surface element types
(see figure 3.7). The types of the surface elements are determined from the
smoothed indicator field. After re-translation of the surface elements from
their ’standard-case-position’ to their real position in the computational do-
main the resulting contribution to the pull force is computed from

(Fst)i,j = σledge(ti,j × nj) (3.14)

(Fst)i,j is the pull force acting on element i, at the edge connecting elements
i and j. Here σ is the surface tension constant, ledge is the length of the edge,
ti,j is the unit tangent vector between the elements i and j, and nj is the unit
normal vector on element j (see figure 3.8).

The implementation of the re-translation procedure is one of the procedures
that requires special attention for this method to work properly. The details
of the initial translation and the re-translation are given in appendix B.
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Figure 3.7: Tangent vectors for the five types of interface elements.

n

t

Fs

Element i Element j

Figure 3.8: Calculations of the contribution of the pull force acting on element
i via the connection with element j.
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Summing all the pull forces for reference element i produces the net surface
tension force acting on this element. Subsequently, the individual forces of
all the edges of all the elements must be distributed to the Eulerian grid.
Since the edges of the surface elements are at the cell faces, the force acting
at the position of the cell face can be obtained from the summation of the
forces acting on the two surface element edges that are at this cell face. This
however, introduces a strong discontinuity in the Navier-Stokes equations.
Therefor, very similar to the approach taken in Front Tracking, it was chosen
to distribute the surface tension forces using

Fst =
∑

D (x − x̃)Fsti,j (3.15)

Where for the distribution function D (x − x̃), again the integrated version
of the Peskin function was used (see appendix E).

Results A first check on the performance of the new surface tension force
model has been carried out by comparing simulation results for the excess
pressure inside a spherical bubble with the analytical solution, the Youngs-
Laplace equation. When comparing the pressure distribution predicted by
the CSF model and the new surface tension model (both using the smoothed
indicator function), see figure 3.5(c) and figure 3.14(c), a much steeper gra-
dient at the interface is computed with the new model. Results will be
discussed in more detail in section 3.4.4.

Another goal of the new model was to decrease the magnitude of the parasitic
currents. In figure 3.9 the computed parasitic currents for a spherical bubble
in a zero gravity field are shown. The simulated bubble is a 3.4 mm argon
bubble in water on a 20×20×20 Eulerian grid, h = 0.226 mm. The flow field
shown is in the xy-plane that crosses the centre of the bubble. The figure
clearly indicates that the parasitic currents are significantly reduced. Most
of the velocity vectors point in opposite direction in the two figures. This is
caused by differences in the oscillation phase of the bubble at a given time
step (induced by numerical errors), predicted by the two different models.
Compared to the flow patterns induced by convection the magnitude of the
parasitic currents is small. Only highly curved interfaces (small bubbles) are
influenced by these currents.

Finally, differences in the shape of a rising bubble can be observed. In section
3.4.3 a series of simulations of rising gas bubbles will be presented calculated
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t=0.0990[s]  xz-plane at 0.47 [-] length comparible to 0.01 m/s

(a)

t=0.0990[s]  xz-plane at 0.47 [-] length comparible to 0.01 m/s

(b)

Figure 3.9: Parasitic currents in a gravitation free field using the CSF -model
(a) and the new surface tension force model (b).
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using either the CSF model or the new surface tension force model. In section
2.4.6 a bubble with the same physical and model parameters was simulated
using the Front Tracking model. From these figures it can be seen that the
rear side of the bubble calculated using the new surface tension force model
retains its somewhat curved shape, while with the CSF model a flat bottom
is predicted. When comparing the computational shape of the bubble to the
shape predicted by the bubble diagram of Grace (1973)(see figure 4.1) the
more curved shape calculated by the new method seems to be more in line
with experiments.

3.3 Numerical method

The implementation of the model equations in the code is given schematically
in figure 3.10.

During the initialisation step the pressure is set according to the hydrostatic
pressure profile and all velocity components are set to 0 m/s, corresponding
to an initially stagnant fluid. From the specified initial position of the gas
bubble the indicator field is computed by first setting all cell values to 1 and
than subtracting the fraction of gas present in that cell. From the indicator
field the local density and viscosity are evaluated and an bubble interface
is constructed. This first interface is needed to compute the surface tension
forces. In the main loop firstly the Navier-Stokes (3.16) equations are solved,
whereas the second step in the main loop involves the determination of the
interface information from the indicator field of the previous time step. Once
the interface data and the velocity field have been computed, the fluxes
through the cell faces can be computed. These are used to compute the new
indicator field. In the last step in the main loop the density, viscosity and
surface tension forces are updated. The finalisation step, called when the
end time of the simulation has be reached, frees the computer memory and
stores the final data.

The Navier-Stokes equations are rewritten in the non-conservative form for
incompressible fluids:

ρ

(

∂u

∂t
+ ∇ · uu

)

= −∇p + ∇ · µ
(

(∇u) + (∇u)T
)

+ ρg + Fst (3.16)
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Solve

if t < t_end

Initialisation

Compute :

Construct the Interface 
Compute fluxes and  

new indicator field

Finalisation

Navier−Stokes equations

surface tension forces
density & viscosity fields

Figure 3.10: Computational flow dia-
gram of the VoF code.

For the density the value of the
former time step is used. This
opens the possibility to solve prob-
lems with a very large density ratio.
The error introduced by this method
is very low, typically below 0.5% fot
the time step used in this work.

The convection terms of the Navier-
Stokes equations are computed using
the second order scheme proposed by
Barton Centrella and Wilson (1984),
Harley et al. (1984) while the diffu-
sive terms are computed using stan-
dard second order finite difference
representations.

The equations are discretized on a
three dimensional rectangular stag-
gered mesh. The pressure Poisson
equation (PPE) is solved by an In-
complete Choleski Conjugate Gradi-
ent (ICCG) algorithm.

On all the boundaries of the compu-
tational domain, except the top, no
slip conditions were applied, while
for the top a continuative inflow of
outflow condition was used.

The density, viscosity and normal to
the interface are evaluated from the smoothed indicator function f̃ (x). This
gives a smooth change in density and viscosity resulting in improved nu-
merical stability and and a better representation of the interface (improved
connection between adjacent surface elements).
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3.4 Model verification

In this section a number of tests are presented that were carried out to show
the capabilities of the model. The following four topics were investigated and
discussed in the next subsections:

• Influence of the grid size of the Eulerian mesh on the conservation of
the bubble volume and the terminal rise velocity of the bubble.

• Standard advection test in an artificial flow field.

• Model stability test.

• Verification of the new surface tension force model by comparing the
interior excess pressure of a spherical bubble with the analytical solu-
tion.

3.4.1 Influence of the Eulerian grid size

A number of simulations were performed to check the influence of the Eu-
lerian grid size and to determine the minimum number of nodes that are
needed to resolve the flow phenomena near a bubble with a reasonable ac-
curacy. All simulations were carried out for a 3.4 mm diameter air bubble
rising in a 1 cm3 container filled with water. In table 3.2 the grid size used
is shown as well as the volume changes after 0.1 s and the Reynolds number
at that time, all rising bubbles reached their terminal rise velocity .

The gas loss is for all cases very small and well within the acceptable range.
As can be seen the error increases with the number of grid cells. This is
related to the increasing Courant-number. In all simulations the same time
step was applied. By decreasing the mesh size a relative larger part of a
control volume is fluxed during one time step. The Reynolds number at
terminal rise velocity of a 3.4 mm diameter air bubble in water is about 80.
It was chosen to use a 60 × 60 × 60 grid for further computations.
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Table 3.2: Relative change in gas volume (in %) and terminal rise velocity
(in m/s) for a 3.4 mm air bubble rising in a 1 cm3 container filled with water
over a time period of 0.1 s using different numbers of Eulerian grid cells.
The reported computing time is the time needed on a single CPU 1800 MHz
AMD PC.

Number of grid
cells in x,y and
z direction

relative
gas vol-
ume[%]

Reynolds
number

computing
time [s]

20 × 20 × 20 +0.00005 75 13 · 103

40 × 40 × 40 −0.00005 75 150 · 103

60 × 60 × 60 −0.0008 75 536 · 103

80 × 80 × 80 −0.0022 75 1900 · 103

3.4.2 Standard advection test

For a proper analysis of the performance of VoF -models, Rider and Kothe
(1998) have indicated that a severe test should be carried out that brings
about pronounced topology changes to elucidate the strengths and weak-
nesses of the algorithm. Among other methods they propose a single vortex
advection test with the stream function given by

Ψ =
1

π
sin2 (πx) sin2 (πy) (3.17)

where ux = −∂Ψ

∂y
, uy = ∂Ψ

∂x
and uz = 0. This velocity field was applied to

a bubble with a relative radius of 0.15 at position (0.5, 0.25, 0.5) in a unit
length box. In figure 3.11 the initial configuration and the deformed interface
after 1 s (1000 time steps) and the final interface after again 1 s are given.
By comparing this result obtained with Front Tracking it can be concluded
that the latter yields better results for this test case.

By comparing the first and the last figure it is concluded that the flux mech-
anism is working properly with reasonable accuracy.
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(a) (b) (c)

Figure 3.11: Result from the standard advection test. The flow is advanced
for 1 s ( 1000 time steps) and then reversed for 1 s. Initial configuration (a),
half time result (b) and final result (c), mesh : 60 × 60 × 60.

3.4.3 Model stability test

In this section simulations will be presented to check whether the code can
run stable for a long period of simulation time. To speed up these simulations
a low density ratio was selected. The physical properties used for these
simulations are given in table 3.3.

The results of these computations are summarised in figure 3.12 and figure
3.13. In figure 3.13 the new surface tension force model was used and in
figure 3.12 the conventional CSF -model was used.

It can be concluded that the code can run stable for long simulation times.
Small differences in the shape of the bubble can be discerned between the
simulation using the CSF -model and the new surface tension force model.
This is attributed to a better prediction of the surface tension force at the
highly curved parts of the bubble interface. A higher value of the surface
tension force acting at these locations gives the bubble a slightly more ’ellip-
soidal’ shape.
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(a) (b)

(c) (d)

Figure 3.12: Results of the stability test using the CSF-model. After (a) 0 s,
(b) 0.2 s, (c) 0.4 s en (d) 0.8 s.
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(a) (b)

(c) (d)

Figure 3.13: Results of the stability test using the new surface tension force
model. After (a) 0 s, (b) 0.2 s, (c) 0.4 s en (d) 0.8 s.
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Table 3.3: Physical and numerical data used in the stability tests.

bubble diameter deq 0.025 m
dimensionless numbers log (Mo) −3.7

Eo 12.3
liquid phase ρ 1000 kg/m3

µ 0.1 Pa.s
gas phase ρ 800 kg/m3

µ 0.1 Pa.s
σ 0.1 N/m

column number of cells 50 × 50 × 100
dimensions 0.05 × 0.05 × 0.1 m3

3.4.4 Verification of surface tension force model: pre-
diction of the interior excess pressure of a spher-
ical bubble

Surface tension forces induce an excess pressure inside a bubble which for a
spherical bubble can be calculated from the Youngs-Laplace equation:

∆p =
2

r
σ (3.18)

In figure 3.14 the pressure distribution in a horizontal plane through the
computational domain at the height of the centre of the bubble is given and
compared to the analytical solution. The excess pressure inside the bubble
is predicted very accurately. The calculation results for the large bubbles
show a small discrepancy with the analytical solution. The absolute value of
this error is in the order of only a few Pascal. This small differance could be
attributed to a small incertainty in the analytical value for the excesspressure,
since this requires the far field pressure.

In the simulations which will be described in the subsequent chapter the new
surface tension force model has been used.
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Figure 3.14: Pressure distribution across the computational domain in a
horizontal plane through the centre of a spherical air bubble in water for
different bubble diameters, using a constant number of grid cells (60×60×60).
(a) deq = 2.5 mm L = 7.5 mm, (b) deq = 5.0 mm L = 15.0 mm and (c)
deq = 10.0 mm L = 30.0 mm.
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3.5 Conclusions

A three dimensional VoF -algorithm, following the approach originally pro-
posed by Youngs (1987), was successfully implemented in a computer code
which is capable of predicting the behaviour of multi-fluid flow problems
accurately. The pressure Poisson equation resulting from the one-fluid ap-
proach was solved with a robust ICCG matrix solver, even for systems with
very high density ratios.

The well known CSF model (Brackbill et al., 1992) to calculate the surface
tension force has been replaced by a new method. The novel method, in-
spired by Front Tracking models, is based on the calculation of the local pull
forces acting between adjacent elements thereby avoiding the computation
of the curvature. The undesired parasitic currents are much smaller when
using this new method offering the opportunity to describe the behaviour of
bubbles with a larger value for κσ (i.e. smaller bubble diameter or higher sur-
face tension). The predicted excess pressure inside a spherical bubble agrees
very well with the Youngs-Laplace equation, indicating that the algorithm
accurately calculates the surface tension forces, provided that the normal
vector to the interfaces is evaluated with the smoothed indicator function
f̃ (x). This also results in a much better connectivity of the adjacent surface
elements. Furthermore, f̃ (x) is also used to evaluate the local density and
viscosity improving the prediction of, the velocity and pressure distribution
in the vicinity of the interface, thereby enhancing the numerical stability.

Usage of the Rider and Kothe correction (Rider and Kothe, 1998) for a
non-divergence free velocity field resulted in an even more rigorous mass
conservation.

The fluid velocity near the interface is tempered when applying Prosperetti’s
approach (Prosperetti, 2001) to compute the local viscosity. This method
uses the harmonic averaging of the kinematic viscosity which has a sound
physical basis and is preferred over the linear weighing that is often applied.
The higher viscosity near the interface resulting from Prosperetti’s approach
seems to have a stabilising effect on the interface dynamics.

In the validation section it was shown that a minimum of about 20 Eulerian
grid cells contained within the bubble in each spatial direction is required to
yield reasonably accurate predictions of the bubble shape, rise velocity and
bubble dynamics. If the distance, counted in computational cells, between
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two facing interfaces is much smaller, the mass of the bubble is over-predicted
because the smoothing functions, used to evaluate the density, start to over-
lap each other.

The use of a non-conservative formulation of the Navier-Stokes equations in
combination with a very small time-step opens the possibility to compute
two-fluid systems with arbitrarily high density ratios.

The standard advection test of Rider and Kothe (1998) and the stability tests
give good confidence that our VoF implementation gives accurate predictions
of the gas and liquid fluxes and runs stable for long simulation times.



Chapter 4

Comparison of detailed models
to experimental data

Abstract

Detailed computations using the Front Tracking model and the VoF model
were compared to experimental data from literature and experimental data
from ultrasound measurements. Several computations were carried out and
all simulations were started with a spherical bubble in a stagnant liquid.
While accelerating to their terminal rise velocity, the bubbles deformed to
their final shape. The shape of the bubbles were compared to the bubble
shapes predicted by the bubble diagram of Grace (1973). Terminal rise ve-
locities were compared to closure relations taken from Clift et al. (1978) and
Tomiyama (1998).

An ultrasound experimental technique was developed by CORUS RT&D
specifically to study bubbles rising in liquid metals. The terminal rise veloc-
ity of argon bubbles rising in liquid aluminium was measured and compared
to simulation results from the VoF and the Front Tracking model.

In the simulations, realistic values for the physical parameters of the gas
and the liquid were used. The bubble shapes were in good agreement with
those reported in the bubble diagram up to an Eötos number of about 40.
The terminal rise velocity of small bubbles (Eö< 0.3) was under-predicted
by both models. Therefore the limits for which the current implementation

65
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of these models yield results with good accuracy are thought to be in the
range of 0.3 < Eö < 40. The simulations that were carried out between
these boundaries show a reasonably good agreement in the rise velocities,
bubble shape and bubble dynamics as compared to those predicted by the
closure relations and the bubble diagram. It was shown that the size of the
computational domain did not influence the results.

The rise velocity of the smaller bubbles is probably affected by parasitic
currents and therefore under-predicted. Parasitic are currents of numerical
nature that occur near the interface of a bubble and is related to the surface
tension forces. The simulations of the larger bubbles can probably be im-
proved by using finer meshes or more realistic specialised start-up conditions.

The differences between the Front Tracking model and the VoF model were
analysed. In most cases the Front Tracking model predicts a slightly lower
terminal rise velocity than the VoF model. The VoF model also shows a
more dynamic behaviour of the interface. It was tested if the relative large
loss of gas volume in Front Tracking (as compared to VoF ) could account for
this effect, but since the gas loss in our simulations was below about 2% this
was not the case. Both effects can probably be attributed to the different
techniques used to compute the local velocity at the interface.

The experimental results obtained for liquid bubbles rising in liquid alu-
minium, from the ultrasound measurements gave very detailed data on the
bubble growth, the bubble acceleration and the terminal rise velocity. In-
formation about the bubble shape could not be obtained with this method.
The high density ratio and the high surface tension of this system are often
hard to handle in numerical codes but proved to be no problem in this work.
When the bubble shape is deduced from the bubble diagram (Grace (1973)),
the bubble is most probably in the wobbling regime1. The simulation results
also showed a bubble in wobbling motion with a terminal rise velocity that
was within the measurement accuracy of the experiments. It is concluded
that both the Front Tracking model as well as the VoF model are well ca-
pable of simulating gas bubbles in high density liquids and with a very high
surface tension.

1The bubble diagram includes no experimental data at this location in the graph.
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4.1 Introduction

Bubble columns are gas-liquid contact devices that are frequently applied in
(bio-)chemical reaction engineering because of their relative ease of construc-
tion, simple operation, and good heat and mass transfer characteristics. To
simulate the behaviour of this apparatus, several mathematical models have
been developed. To validate these mathematical models, data obtained from
simulations using these models should be compared to experimental data.
Once the models have proven to generate sufficiently accurate results, the
mathematical models can be used as predictive tools. This would greatly
enhance the development of bubble columns.

In this chapter, data obtained from simulations with the VoF -model and
the Front Tracking-model that were described in the previous chapters, are
compared to experimental data. First, the models will be compared to a
wide range of experimental data taken from literature (Grace (1973), Clift
et al. (1978) and Tomiyama (1998)). Second the models will be compared
to a specific case, i.e. argon bubbles rising in liquid aluminium. Doing mea-
surements under these exceptional conditions required the development of a
new experimental technique. CORUS-RD&T has developed an ultrasound
method that was able to conduct these measurements. The experimental
technique, the experiments and the results will be addressed shortly in this
chapter and will be compared to numerical results of the two mathematical
models.

Visualisation of the simulation results pertaining to the Front Tracking model
are represented in C. Visualisations of the VoF model results are shown in
appendix D.

4.2 Comparison of detailed models to exper-

iments reported in literature

4.2.1 Bubble shape and dimensionless numbers

Grace (1973) has compiled a large variety of experimental data together and
it was shown that all these data fit into one figure, when an appropriate set
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of dimensionless numbers is used. A copy of this graph, taken from Clift
et al. (1978) is reproduced in figure 4.1. Grace (1973) used the dimensionless
Morton (Mo), Eötvos (Eö) and Reynolds (Re) numbers, which are defined
by

Mo =
gµ4

l ∆ρ

ρ2
l σ

3
(4.1)

Eö =
g∆ρd2

eq

σ
(4.2)

Re =
ρlv∞deq

µl

(4.3)

where the effective diameter deq is defined as the diameter of a spherical
bubble with the same volume as the bubble under consideration.

In the Morton number, viscous forces are related to the surface tension. The
Eötvos number is the ratio of a Weber to a Froude number, and is a measure
of the relative magnitude of the gravity and the interfacial tension forces. The
Reynolds number is a measure for the terminal rise velocity. Certain regions
within the graph can be connected to a specific bubble shape. Spherical
bubbles are found in the left bottom corner while spherical cap bubbles are
found in the right top corner.

This graph is less suitable for obtaining exact data, since all the axes have
logarithmic scales. The qualitative indication of the bubble shape and ap-
proximate velocity is reasonable accurate and therefore it is very useful for a
first evaluation of simulation results.

4.2.2 Correlations for the terminal rise velocity

Usually, the experimentally determined rise velocities have been fitted via
the drag force Fd and the drag coefficient Cd, defined as

Fd =
1

2
CdρlπR2

b |v − u| (v − u) (4.4)
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Figure 4.1: Bubble diagram. Taken from Clift et al. (1978).
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Clift et al. (1978) and Tomiyama et al. (1998) reported a number of frequently
used relations. Clift et al. (1978) give different correlations for the drag force
coefficient Cd that are valid for spherical bubbles.

The first closure taken from Clift et al. (1978) is a fit to numerical data and
is given by

Cd = 14.9Re−0.78 (4.5)

This relation can be applied to gas bubbles, up to a bubble Reynolds number
Re = 300.

A second equation, also reported by Clift et al. (1978), is obtained from error
distribution (or Galerkin) methods and is given by

Cd =
3.05 (783κ2 + 2142κ + 1080)

(60 + 29κ) (4 + 3κ)
Re−0.74 (4.6)

where κ is defined as µgas/µliquid. This relation can be applied in the range
of 4 ≤ Re ≤ 100.

Also for ellipsoidal and spherical cap bubbles Clift et al. (1978) give equa-
tions for the terminal rise velocity. For ellipsoidal air bubbles in pure wa-
ter equation 4.7 was developed. This function is applicable in the range
0.15 ≤ Eo ≤ 40.

U∞ =

((

2.14σ

ρldeq

)

+ 0.505gdeq

)0.5

(4.7)

and for spherical cap bubbles the following equation was derived:

U∞ =
2

3

√

gdeq

∆ρ

ρl

(4.8)

Both functions only apply to air bubbles rising in water. This limitation has
to be kept in mind when comparing these data to the numerical results.

Tomiyama et al. (1998) proposed a single equation that is valid for the com-
plete range of bubble diameters and physical properties. The correlation for
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Cd is based on a fit of experimental data taken from Grace (1973). Following
Tomiyama et al. the drag coefficient can be computed by:

Cd = max
(

min
(

A

Reb

(

1 + 0.15Re0.682
b

)

,
3A

Reb

)

,
8

3

Eo

Eo + 4

)

(4.9)

4.2.3 Simulations: set-up and results

Using the VoF -model and the Front Tracking-model, that were described
in the previous chapters, simulations were carried out that were compared
with the above mentioned closure relations. Initially, a spherical bubble was
positioned in a stagnant liquid under hydrostatic pressure. The computa-
tional domain was taken to be three times the diameter of the bubble in all
directions and the mesh was chosen to be 60 cells in all directions.

During the simulation the flow field surrounding the bubble develops and
the bubble shape changes. Typically the bubble accelerates gradually to its
terminal rise velocity. Sometimes it is observed that occasionally bubbles
slow down slightly due to a change in the bubble shape.

In subsequent sections the simulation results will be discussed in more detail.
In figure 4.2 typical simulation results from both models are shown.

4.2.4 Spherical bubbles

Both methods were applied to compute four different bubbles that were all in
the region of the Grace diagram of spherical bubbles. The physical properties
that were applied during these simulation are summarised in term of the
dimensionless Eö and Mo numbers and are given in table 4.1. This table
also gives references to figures from the simulation results summarised in the
appendixes.

The bubble shapes as presented in these figures show a more or less spherical
shape. In both models, simulations of bubbles with a high surface tension,
show a less smooth interface. Nevertheless, the spherical shape is conserved.

In table 4.2 the bubble Reynolds number at the terminal rise velocities of
the bubbles are compared to Reynolds numbers evaluated from the closure
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(a) (b)

Figure 4.2: Examples of different bubble shapes as computed by the Front
Tracking model (a) and the VoF model (b). The dimensionless numbers for
both bubbles are : Eö = 10, log (Mo) = −5.24, but are taken after a different
simulation time. figure (a) was taken after 0.1 s while figure(b) was taken
after 0.3 s.

relations given in the previous section. The terminal rise velocity is obtained

Table 4.1: Dimensionless numbers of numerical experiments of (practically)
spherical bubbles and references to the figures of the simulation results.

Front Tracking VoF
case Eö log(Mo) page/figure page/figure
1 0.1 −8.6 147/ C.2
2 0.1 −10.6 154/D.1
3 1.0 −1.8 147/ C.3 154/D.2
4 1.0 −3.8 148/ C.4 155/D.3
5 10.0 5.0 148/ C.5 155/D.4
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Table 4.2: Reynolds number for the simulated bubbles rising at their terminal
rise velocity compared to data from literature.

case Eö log(Mo) VoF Front Tracking eqn. 4.5 eqn. 4.6 eqn. 4.9
1 0.1 −8.6 - 8.48 28.00 27.70 42.30
2 0.1 −10.6 +/ − 85 - 179.35 160.73 184.48
3 1.0 −1.8 1.09 0.82 - - 1.02
4 1.0 −3.8 8.15 6.41 5.21 5.27 5.83
5 10.0 5.0 0.11 0.130 - - 0.055

from the velocity graphs that are included in the appendices.

A point of concern is the validity of the closure relations. Equation 4.5 and
4.6 both have a lower limit at Re = 2 and Re = 4 respectively. These
equations are therefore not applicable for the third and the last simulation.

The Reynolds numbers computed by the models for the first two simulations
are far lower than the Reynolds numbers predicted by the closure relations.
This is probably due to parasitic currents near the interface. Parasitic cur-
rents result from the numerics of the computation. They occur at interfaces
with a high surface tension or curvature. From the figures in the appendices
it can be seen that the interface of these bubbles is non-smooth, indicating
local currents near the interface. The circulating nature of these currents can
suppress the motion of the bubble resulting in a lower rise velocity.

The computed Reynolds numbers for case 3 and 4 are slightly higher than
those evaluated from the closure relations. The Reynolds numbers resulting
from the VoF -simulations are, except for the last one, slightly higher than
those obtained from the Front Tracking simulations.

The over-prediction of the Reynolds number is probably related to the method
to evaluate local velocity. Both models interpolate the liquid and the gas
phase f velocities. Inevitable inaccurcies in the computation near the inter-
face affect interpolated local interface velocity. Since the density of the gas
is much lower than the density of the liquid, the gas velocity is very sensitive
to small inaccuracies in the momentum balance. The stencil used for the
interpolation of the local velocity in the Front Tracking-model is wider than
the one use in VoF. This means that the gas velocity near the interface has a
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Table 4.3: Dimensionless numbers of simulation results of ellip-
soidal/wobbling bubbles.

VoF Front Tracking
case Eö log (Mo) page/figure page/figure
6 1.0 −6.1 149/ C.6 156/D.5
7 1.0 −11.0 149/ C.7 156/D.6
8 10.0 −1.8 150/ C.8 157/D.7
9 10.0 −5.2 150/ C.9 157/D.8
10 10.0 0.6 151/ C.10 158/D.9

larger impact on the local mean velocity evaluated in VoF. This could cause
the VoF -model to predict a slightly higher rise velocities. Further research
is needed to elucidate the effect of the interpolation method.

4.2.5 Ellipsoidal/Wobbling bubbles

In the region for which ellipsoidal bubbles or bubbles in a wobbling motion
are expected, five simulations were carried out. As in the previous subsection,
the physical properties of the bubbles are given as dimensionless numbers.
In table 4.3 the Eö and log(Mo) numbers of the simulations can be found
together with a reference to the figures of the simulation results in the ap-
pendices.

The shapes of the bubbles that are presented show a reasonable agreement
with the bubble diagram.

Also simulations for bubbles with Eö numbers larger than 40 were tested.
During the deformation of these bubbles the rear end of the bubbles was
moved so far into the bubble that the rear interface touched the leading
interface. In the simulation using the Front Tracking-model this resulted
in a torus with a thin double interface at the top. In VoF -simulations this
resulted in a break up of the interface leaving a torus shaped bubble that
in most simulations broke down in four smaller bubbles. An explanation for
this problem could be related to the somewhat artificial start-up conditions
of the simulations. When a bubble accelerates it has to pass through several
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Table 4.4: Reynolds numbers as computed using Front Tracking of VoF
compared to Reynolds numbers from several closure relations.

case Eö log(Mo) VoF Front Tracking eqn. 4.9 eqn. 4.7
6 1.0 −6.1 50.91 40.73 34.33 54.28
7 1.0 −11.0 1023.26 930.29 890.81 930.90
8 10.0 −1.8 13.27 13.27 12.01 13.76
9 10.0 −5.2 3.58 3.24 1.16 3.41

regimes of Reynolds numbers (going up in the bubble diagram). For these
larger bubbles, this path leads through the region where skirted bubbles
which have thin tails, are expected. Simulation of these bubbles requires a
much higher resolution than applied in this study.

In table 4.4, the Reynolds numbers computed from simulation results of the
Front Tracking-model and the VoF -model are compared to the Reynolds
numbers computed from closure relations.

Most of the results are well within the range that is predicted by the two
closure relations. Only the computed Reynolds number for the second case is
slightly higher. Again the validity of the closure relations should be discussed.
Equation 4.7 is derived for bubbles rising in pure water. The second bubble
in table 4.4 has its dimensionless numbers close to those of water and is
therefore likely to be predicted quite accurately. The Reynolds number of
the Front Tracking simulation is close to value predicted by this closure
equation. Equation 4.9 is, according to the authors, valid for the whole range
of dimensionless numbers. The simulation results are in quite reasonable
agreement with these figures.

4.2.6 Discussion

The bubble shapes resulting from the simulation show a qualitative agree-
ment with the bubble shapes that are predicted by the bubble diagram
(Grace, 1973). The Reynolds numbers resulting from the simulations are
mostly in the same range as those predicted from closure relations. Bubbles
with a very high curvature have a somewhat lower computed terminal rise
velocity than predicted by the closures. Therefore, the lower boundary at
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Figure 4.3: Influence of the size of the computational domain on the terminal
rise velocity. In both simulations the grid spacing was kept constant h =
4.1667 · 10−4 m. The difference in terminal rise velocity is about 4 mm/s.
(Eö = 10, log (Mo) = −5.24).

which, the current implementations of these models, with the chosen reso-
lution, can be applied with reasonable accuracy is about Eö > 0.3. On the
other end, bubbles with Eö > 40 showed in-realistic results. This limits the
use of these models to 0.3 < Eö < 40.

In addition, it was checked whether the size of the domain significantly effects
the terminal rise velocity. Due to the hindering of the downward liquid flow
the bubble rise velocity could be decreased. In figure 4.3 the influence of
the computational domain is shown. Although a larger domain results in a
slightly higher rise velocity the difference is small.

Most of the VoF simulations show a higher Reynolds number than the Front
Tracking simulations. It was checked if loss of gas volume during the Front
Tracking computation effected the rise velocity. If in Front Tracking, the
bubble volume would decrease very rapidly, this could be a reason for the
decrease in terminal rise velocity. (see for example the bubble diagram: if
the Eötvos number decreases, the Reynolds number decreases also). The gas
loss in the simulations using the Front Tracking model never exceeded 2 %
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of the initial gas volume. This decrease is not sufficient to account for the
differences observed between the two models and therefore this hypotheses
should be rejected.

A final explanation can be found in the method that was applied to evaluate
the local velocity at the interface. This was already mentioned before. Since
this can explain both the over-prediction of the Reynolds number of both
models, as compared to the closure relations, and the difference between the
models it is the most likely reason for the observed discrepancies.

Simulation results show a second difference between the Front Tracking and
the VoF -model. If a sequence of images is produced, the bubble interfaces
have different dynamics with both the models. Using Front Tracking, almost
no interface dynamics is observed, while the VoF simulations show more
interface dynamics. The absence of the dynamics in the Front Tracking
model is most probably a result of the interpolation scheme used to compute
the local velocity of the marker points. This is done using a large stencil
that is likely to filter numerical disturbances. In VoF, the volume fluxes
through the cell faces are computed using the velocity at the position of the
staggered nodes, without interpolation, resulting in an immediate reaction
of the interface structure to small fluctuations in the velocity field in the
vicinity of the interface.

Concluding, both the models can be applied in a wide range of Eötvos num-
bers in the range 0.3 ≤ Eö ≤ 40. For Eötvos numbers smaller than 0.3,
parasitic currents influence the fluid flow to such an extent that an accurate
prediction of the terminal rise velocity can no longer be obtained. For Eötvos
numbers exceeding 40, the bubbles started from their initial spherical shape
and deform to unrealistic torus-like bubbles. In Front Tracking this results
in a very thin interface at the top of the bubble. In VoF this interface breaks
up and a real torus is created. The break-up in VoF is due to the numerical
method and has no sound physical basis. A possible solution could be to use
a refined mesh. If the mesh is sufficiently small no break-up will occur. For
a realistic modelling of the break-up process however a break-up algorithm
should be implemented.
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4.3 Comparison of experimental data on li-

quid aluminium to computed results

4.3.1 Introduction

Liquid metals like liquid aluminium or liquid iron are very hard to handle be-
cause of their melting temperatures (about 750oC and 1500oC respectively).
Measurements in these liquids are therefore difficult to perform. In order to
get insight in the behaviour of gas bubbles in these liquids, CORUS RD&T
developed a new measuring technique that enables monitoring of the vertical
position of a bubble interface in these metals. In the next section the tech-
nique will be addressed briefly and in the subsequent sections the measured
data are compared to computational results from both Front Tracking and
VoF models.

4.3.2 Experimental method

The newly developed technique uses ultrasound signals to detect the interface
of the bubble. A first probe, the transmitter, sends an ultrasound signal into
the liquid. The signal is reflected on the bubble interface and a second
probe, called the receiver, picks up a returned signal (see figure 4.4). The
time difference between the sent and received signal is a measure for the
distance of the bubble interface to the probes. In figure 4.5 typical raw data
pattern of such an experiment are shown.

The reported experiment was conducted with liquid aluminium. The probes
needed in these experiments were especially prepared to withstand the tem-
peratures of molten aluminium. At the wavy liquid interface, a large tem-
perature difference exists that puts heavy demands on the probe material.
Further details about the method are given by van Oord et al. (2001).

From the raw data several parameters can be computed. The growth rate
for example can be calculated by analysing the slope of the curve in the
lower first part of the curves. At this point in the measurement the bubble
is still attached to the nozzle. The distance to the probes decreases slowly
and is a direct measure for the bubble diameter. Just before the bubble
detaches, the final bubble diameter can be obtained. After detaching the
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nozzle

Transmitted signal

Received signal

time

transmitter receiver

Figure 4.4: The left figure shows schematically the position of the transmitter
and the receiver (after van Oord et al. (2001)). The right figure indicates the
signals that are sent and received. The distance between the sent signal and
the received signal decreases when the bubble comes closer to the transmitters
(after van Oord et al. (2001)).

bubble accelerates to its terminal rise velocity. This acceleration phase is
measured in the curved part of the data. This acceleration is of interest
when studying the closure relations for the virtual mass forces. The terminal
rise velocity can be computed from the steep gradient in the last part of the
curves and is computed by dividing the displacement by the time. From the
number of peaks, time and the gas flow rate the mean volume of the bubbles
can be obtained.

4.3.3 Experimental data

From the graph shown in figure 4.5 it can be seen that 10 bubbles were
released in 16 seconds, one bubble every 1.6 s. The gas flow rate used in
this experiment was 1.0 l/h = 2.77 · 10−7 m3/s. Therefore the mean bubble
volume is 4.43 · 10−7 m3, which means that the mean equivalent bubble
diameter is 9.3 · 10−3 m.

The terminal rise velocity that was computed from this figure lies between
0.35 and 0.40 m/s. The bubble diameter (as obtained from the lower part of
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Figure 4.5: Raw data of an ultrasound measurement in liquid aluminium
with a gas flow of 1 l/h. On the vertical axis the distance from the bubble to
the transducers is given. Each peaks represents a single bubble. From these
peaks the terminal rise velocity can be evaluated. The zoomed picture on
the right, shows how to obtain the bubble grow rate from this graph.
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Table 4.5: Physical properties of liquid aluminium at 930 K.

σ 0.9 kg/s2

ρ 2.68 · 103 kg/m3

µ 1.1 · 10−3 kg/m.s
νsound 4650 m/s

the curves) is about 1 · 10−2 m which is in good agreement with the result of
the previous calculation of the mean equivalent bubble diameter.

4.3.4 Simulation results

Initial settings of the simulation

Both the VoF and the Front Tracking models were used to simulate this
experiment. The model parameters that were applied are: a 60 × 60 × 60
cells Eulerian grid, l × w × h = 0.03 m × 0.03 m × 0.03 m with a moving
window, this means that the computational domain is shifted with the bubble
to keep the centre of mass of the bubble in the centre of the computational
domain. The initial bubble with diameter 9.8 ·10−3 m is placed in the middle
of the box. Physical properties of aluminium can be found in table 4.5. The
simulated time was 0.1 s. The computation took about 8 days on a 1.8 Ghz
AMD personal computer.

Computational results

In figure 4.6(a) the x and z coordinate of the centre of mass of the bubble
calculated by the VOF and Front Tracking model are shown (the y coordinate
is left out for readability of the graph). In figure 4.6(b) the rise velocity of
the bubble as a function of time is shown. The rise velocity of the VoF
computation is slightly higher than the one computed by the Front Tracking
model. A small part, about 2 %, of this difference can be accounted for
by the loss of gas volume in the Front Tracking model but this value is too
small to account for the entire velocity difference. VoF predicts a much more
dynamic bubble interface compared to the Front Tracking model. This was
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already discussed in section 4.2.6. From the bubble diagram of Grace (Grace,
1973), it can be concluded that a dynamic behaviour of the argon bubble in
aluminium is to be expected and that the Re number is in the correct range.
Since the Morton number for this liquid gas system is way out of range of
this diagram only the trend can be compared.

The terminal rise velocity determined from the ultrasound experiments for
this bubble is in between 0.35 and 0.40 m/s. The dynamic behaviour of
the bubble interface simulated by the VoF model has a large impact on
the velocity graph resulting in a large degree of freedom for this parameter.
It is not clear if the Front Tracking model will start wobbling after longer
simulation times. The velocity computed by the VoF simulations is around
0.40 m/s. The velocity computed by the Front Tracking model approaches
this value.
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Figure 4.6: Rise velocity (a) and x and z coordinate (b) of an 0.98 cm argon
bubble in liquid aluminium. Dimensionless numbers Eö= 2.75, log (Mo) =
−14

4.3.5 Discussion

The simulations show for both models a rapid acceleration from 0 to about
0.2− 0.3 m/s whereafter the acceleration slows down. Front Tracking shows
a increase of the velocity till about 0.08 s, while the VoF simulation shows a
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more chaotic gradual acceleration, however with periods of acceleration and
deceleration. This is due to the more pronounced wobbling motion predicted
by the VoF model. This wobbling motion can also be seen in an animation of
the numerical results. The Front Tracking model does not show this motion.

The models both predict the terminal rise velocity of the bubble reasonable
accurately. The terminal rise velocity predicted by VoF is somewhat higher
than the one predicted by Front Tracking. This could be due to the dynamic
behaviour of the interface in Front Tracking.

4.4 Conclusion

The simulations using the Front Tracking model and the VoF model were
compared to experimental data. Both models give similar and reasonable
accurate results for the bubble shape as well as the terminal rise velocity.
Even the very special case of an argon bubble rising in liquid aluminium (with
an exceptionally high surface tension) could be simulated with a reasonable
accuracy.

It was also shown that both models have their own advantages and disadvan-
tages. The Front Tracking model is very stable but shows some loss of gas
volume. Due to its stability it did not start to predict the wobbling motion.
This motion could start after longer simulation times. Gas loss in simulations
with the VoF method was negligible small , but this method shows a bubble
interface that reacts strongly to small velocity deviation near the interface.

From the comparison with the experimental data none of the models shows
to be significantly more accurate than the other.
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Chapter 5

Discrete bubble modelling

Abstract

Discrete bubble models were introduced in the 1990’s by Trapp and Mortensen
(1993), Lapin and Lübbert (1994) and Delnoij et al. (1997). These models are
very useful in predicting the local bubble ’collision’ frequentcy from which,
the bubble size distribution can be calculated with proper closures for co-
alescence and break-up. This size distribution has a major impact on e.g.
the flow field and the mass transfer. In the present work the deterministic
Euler-Lagrangian model, which was originally developed by Delnoij (1999),
was improved on numerous aspects.

The new features include state of the art closure relations for the forces act-
inf on the bubbles and detailed treatment of the bubble-bubble interaction,
by accounting for collision of bubble pairs. The original three dimensional,
two way coupled model has evolved to a full four way coupled model. The
description of the continuous phase now includes a (very) large eddy sim-
ulation (LES) model to account for sub-grid scale turbulence. The origi-
nal up-wind discretisation scheme was replaced by a second order accurate
Barton-scheme.

All modifications to the original model were tested separately and simula-
tions were carried out to show the effects of the new elements. Finally, the
numerical results were compared to experimental data taken from PIV mea-
surements for a relative high superficial gas velocity (5 mm/s).

85
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The replacement of the up-wind scheme only marginally changed the simu-
lation results. The LES reduced the vertical liquid velocity and narrowed
the range of the standard deviation values indicating a less dynamic flow
pattern. Introduction of new closure relations effected the mean position of
the bubbles. The bubble plume narrowed and the velocity near the plume
increased consequently. By introducing full four way coupling, we were able
to increase the maximum gas load and this enabled us to simulate bubble
columns with superficial gas velocities up to at least 15 mm/s with local gas
fractions up to about 40 %.

A reasonable resemblance between numerical and experimental data was
found in the more homogeneous sections of the bubble column. In the lower
parts of the column where the bubbles are located near the central axis of the
bubble column, the velocities of both the liquid and the gas phase are over
predicted. This is probably caused by the fact that the implemented closure
relations were not derived for very high gas fractionis. Further research is
needed to investigate this.

5.1 Introduction

In many processes encountered in the chemical, biological or metallurgical
industry, dispersed gas-liquid flows prevail in several types of devices such
as spray drying or cooling towers, evaporators, fermentation reactors, and
bubble and slurry columns. In this study we focus on the numerical modelling
of bubble columns. Bubble columns find a widespread application in industry
because of their low operating costs and their good mixing and heat transfer
characteristics. Despite their frequent application, fundamental knowledge
of bubble column behaviour is still lacking.

Detailed hydrodynamic models can provide insight into the fundamentals of
bubbly flow and can direct experimental work and limit the extent to which
experimental work is required.

Hydrodynamic models for bubbly flows can focus on a number of length and
time scales in the flow. The more detail is required the more computational
effort is needed. Flows in industrial scale devices can now be simulated us-
ing Euler-Euler models that treat the different phases as inter-penetrating
fluids. Euler-Lagrangian models can be considered as the next level of detail.
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A number of variants of these models exist. In stochastic Euler-Lagrangian
models a number of size classes is distinguished and a few representative par-
ticles of each class are tracked. In this study a deterministic Euler-Lagrangian
is used. Deterministic models follow each bubble individually. This allows a
very detailed treatment of all the encounters between bubbles even at a very
high gas loading. This model is also referred to as the Discrete Bubble Model
(DBM ).

Both Euler-Euler models and Euler-Lagrange models need closure relations
to account for the phenomena at sub-grid scale level (e.g. the influence of the
bubble shape) that are not resolved. Since these relations are of empirical
nature and are incompletely understood, this is still a disadvantage of those
models.

Bubble formation, bubble shape and bubble dynamics on the level of a single
or a few bubbles can be studied in great detail using detailed models like
VoF or Front Tracking (Chapters 2 and 3). These models can also be used
to study and derive the closure relations needed by the Euler-Euler or Euler-
Lagrangian models.

In this chapter the DBM model developed by Delnoij (1999) will be extended.
The continuous phase flow model was improved by adding an LES model and
a second order accurate Barton scheme for the convective fluxes. Closure
relations for the drag, lift and wake force, proposed by Tomiyama et al.
(1998), were implemented.

To validate the model, the simulation results were compared to experimental
data. These data were obtained using a two-camera Particle Image Ve-
locimetry (PIV ) technique. This technique can capture the motion of the
continuous liquid phase and the discrete gas phase simultaneously which has
the advantage that the data for both phases originate from the same experi-
ment.

The first half of this chapter describes the mathematical model, followed by
a brief overview of the numerical implementation. In the second half, the
effects of the new elements will be shown. Finally the simulation results will
be compared to experimental data.
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5.2 Model equations

The hydrodynamic model consists of two coupled parts. The first part de-
scribes the continuous liquid phase while the second part treats the discrete
gas bubbles. The coupling between the gas and the liquid phase is achieved
by ensemble averaging of the momentum of the bubbles present in a specific
control volume and incorporating these, as source terms into the liquid phase
momentum equations. The coupling of the momentum from the liquid to the
gas-phase is done via the closure relations. The interaction between bubbles
is modelled via an encounter model.

5.2.1 Liquid phase hydrodynamics

The liquid phase is modelled by modified Navier-Stokes equations

∂ (εlρlu)

∂t
+ ∇ · εlρluu = −εl∇p −∇ · εlτl + εlρlg + Γ (5.1)

and the equation of continuity

∂ (εlρl)

∂t
+ ∇ · εlρlu = 0 (5.2)

where εl indicates the liquid volume fraction and the source term Γ accounts
for the momentum exchange between the gas bubbles and the liquid phase.
The liquid phase viscous stress tensor τl is modelled assuming a Newtonian
behaviour of the liquid. (See e.g. Bird et al. (1960))

The viscosity µ used in these equations was taken to be the sum of the
molecular viscosity µm and the turbulent viscosity µt, where the latter was
modelled using the Smagorinski model (Sagaut, 2001).

Smagorinski model

Jacobsen (1997) and Deen (2001) did extensive work on the selection and
verification of a model that could account for the sub-grid scale turbulence.
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Following them, a Smagorinski model was adopted to account for the sub-
grid turbulence stresses. In this implementation the minimum mesh size is
limited to a couple of bubble diameters. Deen (2001) has proven that even
on this scale the LES model is preferred over, for example, the kε-model.

In this LES implementation, the turbulent viscosity µt can be evaluated by:

µt = ρll
2
mix

√

1

2
SijSij (5.3)

where Sij represents the (i,j)-th component of the strain rate tensor. The
components of S are given by

Sxx = 2
∂ux

∂x
(5.4)

Syy = 2
∂uy

∂y
(5.5)

Szz = 2
∂uz

∂z
(5.6)

Sxy = Syx =
∂ux

∂y
+

∂uy

∂x
(5.7)

Sxz = Szx =
∂ux

∂z
+

∂uz

∂x
(5.8)

Syz = Szy =
∂uy

∂z
+

∂uz

∂y
(5.9)

(5.10)

The mixing length lmix is related to the grid spacing h by

lmix = Csh (5.11)

where Cs is the Smagorinski constant, which approximately equals 0.1.
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5.2.2 Bubble dynamics

In our DBM all bubbles are tracked individually, where their motions are
described by Newton’s second law.

mbubble

du

dt
= Ftot (5.12)

where Ftot is the total force acting on a bubble. Several authors reported
forces that could influence the motion of the bubbles. A large number of
these forces were summarised by Jakobsen et al. (1997). In this work, the
contribution resulting from gravity, pressure, drag, lift, wake and virtual mass
forces were taken into account. This approach was also taken by Jakobsen
and Svendsen (2000).

Ftot = Fg + Fp + Fd + Fl + Fwake + Fvm (5.13)

The new velocity and position of the bubble is now computed from respec-
tively

vt+1 = vt +
du

dt
∆t (5.14)

xt+1 = xt + vt∆t +
1

2

du

dt
(∆t)2 (5.15)

Gravity and pressure forces

The sum of the gravity and pressure forces are given by the the standard
expressions,

Fg + Fp = ρggVb − Vb∇p (5.16)

where Vb is the bubble volume and p corresponds to the far field pressure.
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Drag force

The drag force is often evaluated by:

Fd = −1

2
CdρlπR2

b |v − u| (v − u) (5.17)

Delnoij (1999) applied the Cd for rigid spheres, since small spherical air
bubbles rising in tap water behave like rigid particles with a low density:

Cd =

{

Re < 1000 24

Re
(1 + 0.15Re0.687)

Re > 1000 0.44
(5.18)

Tomiyama et al. (1998) reported a number of other relations for purified and
contaminated liquids. In the present study the one for contaminated water
was incorporated in the model.

Cd = max
(

min
(

A

Reb

(

1 + 0.15Re0.682
b

)

,
3A

Reb

)

,
8

3

Eo

Eo + 4

)

(5.19)

where Eo is the Eötvos number and Reb is the bubble Reynolds number eval-
uated for the equivalent bubble diameter. The variable A takes a value of 16
for purified liquids and 24 for slightly contaminated liquids. This formulation
was adopted in the present model because it is valid over a wide range of
bubble sizes and different gas-liquid combinations.

Lift force

The lift force acting on the bubble can be computed from an equation derived
by Auton (1983).

Fl = −ClρlVb (v − u) × (∇× u) (5.20)

Delnoij (1999) used a Cl value of 0.53, following Auton (1987). Tomiyama
et al. (1998) proposed a new function for the lift coefficient obtained from an
extensive experimental and computational study.

Cl = 0.288 tanh (0.121Reb) (5.21)
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This relation takes into account the different behaviour of larger and smaller
bubbles if rising in a linear shear flow. Large bubbles move to the high
velocity region while small bubbles move towards the low velocity region
(Tomiyama, 1998). In the present work this latter formulation was applied.

Wake force

The wake force Fwake, accounts for the different sign of the lift force be-
tween ridged and deformed particles (Jakobsen and Svendsen, 2000) and is
evaluated by a formulation given by Tomiyama et al. (1998):

Fwake = −CwakeρlVb (v − u) × (∇× u) (5.22)

Cwake =











0 for Eo < 4
1.05 · 10−3Eo3 − 0.0159Eo2 − 0.00204Eo + 0.176 for 4 < Eo < 10
−0.576 for Eo > 10

Since this formulation is similar to the formulation of the lift force, the two
constants of both the lift and the wake force can be summed and used in one
joint formulation.

Virtual mass force

Following Auton (1983) and Delnoij (1999) the following equation has been
adopted to account for the virtual mass force acting on a bubble

Fvm = −
(

DI

Dt
+ I · ∇u

)

(5.24)

where I is given by

I = CvmρlVb (v − u) (5.25)

The value for Cvm is taken to be equal to 0.5.
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5.2.3 Direct bubble-bubble interaction

In the three dimensional DBM -code developed by Delnoij (1999), the bubble-
bubble interaction was neglected. Consequently, bubbles could overlap each
other. In dense swarms, considerable overlap between the bubbles can pre-
vail. Overlapping bubbles have hardly any influence on the numerical sta-
bility of the code, if the local gas fraction stays below about 5%. If the su-
perficial gas velocity is increased, the (local) gas fraction can be significantly
higher. In Sommerfeld (2000), it was stated that if the volume fraction of
the gas is above 1 ·10−3, the bubble bubble interaction becomes so important
that four way coupling is needed. By introducing an encounter algorithm in
our model this interaction has been accounted for. The algorithm ensures
that bubbles never have relevant overlap with other bubbles. This opens the
possibility to perform simulations at higher (local) gas hold-ups and thus
higher superficial velocities.

If two bubbles hit each other two things can happen, either the bubbles
bounce and separate or the bubbles coalesce. Rebounding is frequently seen
when both bubbles have low Eö numbers. Coalescence is likely to occur when
at least one of the bubbles has a large Eö number. In this model, only the
collision is accounted for. The present models for collision and break-up are
not sufficiently accurate to describe these phenomenon and are therefore not
evaluated in this model. (See e.g. Chesters (1991) for models on coalescence
and break-up).

If large bubbles encounter a strong shear flow, they can break up into two
parts. This is also not accounted for due to the lack of accurate models that
describe this phenomenon.

Bubble encounters

The collision algorithm is briefly described below. For more details on this
method see e.g. Delnoij (1999) or Hoomans (2000).

From the initial position and velocity of the bubbles, for each bubble the
smallest time before it encounters with any other bubble is computed. To
speed up the algorithm, only those bubbles in close proximity to the re-
ference bubble need to be taken into account. Subsequently the smallest
encounter time is computed and all bubbles are moved over this time step.
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The two bubbles, that are involved in this collision bounce, assuming fully
elastic collision between hard spheres, by exchanging their momentum and
the following smallest collision time is computed. This loop is repeated until
a preset time, when the liquid flow field is updated.

The time till collision for two bubbles a and b is computed using the following
equation:

tab =
−bab −

√

b2
ab − |va − vb|2

(

|ra − rb|2 − (Ra + Rb)
2 (1 + CV M)

2

3

)

|va − vb|2
(5.26)

where

bab = (ra − rb) · (va − vb) (5.27)

With the CV M term the radii of the bubbles are increased slightly to account
for a liquid shell which is surrounding the bubble. Its value is equal to the
virtual mass coefficient.
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5.3 Numerical method

if t < t_end

Initialisation

Finalize

Move bubbles

Compute local
density and
viscosity

and bounce

Solve 
Navier−Stokes Eqn.

Figure 5.1: Computational flow dia-
gram of the Discrete Bubble Code

In figure 5.1 a flow diagram of the
code is presented. During the initial-
isation all velocities are set to 0 m/s
and a hydrostatic pressure profile is
applied. At start-up, no bubbles
are present in the computational do-
main.

Every time, the main loop is entered,
a number of tasks are performed.
Firstly, it is checked whether any
bubbles are present in the compu-
tational domain. The forces acting
on these bubbles are computed from
the local flow field data and they
are moved according to the Newto-
nian laws of motion. The collision of
the bubbles is done by applying the
above presented collision algorithm.

Bubbles leave the computational do-
main if they hit the top of the do-
main.

Secondly, the Navier-Stokes equa-
tions, which are discretized on
a staggered Eulerian grid, are
solved using a SIMPLE algorithm
(Patankar, 1980). An Incom-
plete Choleski Conjugate Gradient
(ICCG) method is used to solve the
resulting PPE. The convective terms

are evaluated by a second order accurate flux limited Barton scheme (Cen-
trella and Wilson, 1984). The viscous stresses are evaluated from standard
central difference approximations.

At all the boundaries (except for the top) of the computational domain, no-
slip conditions are applied. Free-slip is applied at the top wall. Fluid inflow
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and outflow is allowed for by arranging ring cells near the top of the column.

5.4 Experimental set-up

..................

1.1m

0.15 m

0.15 m
0.15 m

liquid

air chamber

49 nozzles

0.9 m

Figure 5.2: Schematic
representation of the
bubble column used for
the experiments.

Before showing the results from the numerical sim-
ulations, the experimental set-up used to validate
the model results will be explained.

A Particle Image Velocimetry (PIV ) technique1 was
used to measure the flow-field of the gas and the liq-
uid phase. The PIV setup consisted of two parallel
cameras connected to two data cubes. This config-
uration made it possible to measure the liquid and
the gas-phase velocity distribution simultaneously.
To study the flow pattern of the continuous phase
the motion of tracer particles was analysed while
in the discrete phase the bubbles themselves were
used as tracers for the PIV measurements. Using
fluorescent tracer particles and optical filters it is
possible to separate the signal from the continuous
and the discrete phases during the measurements.
Details on this method have been reported by Deen
(2001).

The experimental data reported in this study are
taken with a light sheet positioned at the centre of
the bubble column. In figure 5.3, time averaged
data from these measurements are shown. The left
figure (a) shows the liquid phase velocity field while
the right figure (b) shows the gas phase velocity
field. In the continuous phase, an upwards directed stream is located at the
centre of the column while at the walls a small downstream can be observed.

For validation of the numerical models a number of characteristic parameters
have been selected. At four different heights in the column (0.18, 0.36, 0.54
and 0.72 m), the vertical liquid velocity (uz), the vertical bubble velocity (vz)

1A good introduction to PIV can be found in Raffel et al. (1998)
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Figure 5.3: Data obtained from PIV measurements. a: continuous phase, b:
gas phase. L/D = 6, vsup = 0.0049 m/s.
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and the standard deviation of uz were determined and plotted in the same
graph as the numerical data.

The laser, used for construction of the light sheet, was positioned on the
right side of the bubble column. The data obtained for the left side of the
column are therefore somewhat less accurate since the light was sometimes
blocked by the bubbles in the path of the light. This could be observed in the
standard deviation of the vertical velocity. See for example the experimental
data in figure 5.11(b).

5.5 Model verification

In this section the simulation results are discussed. Firstly we concentrate
on the implementation of new elements and secondly a comparison with
experimental data from PIV measurements.

All simulations were performed for a rectangular bubble column (see figure
5.2). The dimensions of this column were 0.15 m × 0.15 m × 0.9 m. The
bubbles were injected through 49 nozzles with a pitch of 6.25 mm in the
middle of the column. For the experiments the same column was used. The
air for the bubbles was supplied via an air chamber of 0.15 m×0.15 m×0.15 m
(see figure 5.2) which was situated below this bottom plate. The nozzles had
a diameter of 1.0 mm. The total column height was 1.1 m of which 0.9 m
was filled with demineralised water before starting the experiment.

In table 5.1 the details of the simulations that were carried out have been
summarised. The first simulations use the model reported by Delnoij (1999)2.
In simulation 2, the effects of mesh refinement are investigated. In simula-
tions 3 and 4, the Barton algorithm for the discretisation of the convective
terms and the LES turbulence model are introduced.

In simulation 5, the bubble diameter is doubled as this is more in line with
the experimentally observed bubble size. Since the current implementation
of the model is limited to bubbles which are smaller than the mesh size the
calculations were carried out on a relatively course mesh. In simulation 6 the
closure relations proposed by Tomiyama et al. (1998) have been introduced.
In simulation 7, the superficial gas velocity is doubled and the Barton and

2The virtual mass forces are computed explicitly as proposed by Darmana (2002)
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LES algorithm are switched on. In simulation 8 the collision algorithm is
invoked. Finally in simulation 9 the settings of simulation 8 are combined
with the bubble diameter and the superficial gas velocity of simulation 1.

All data in the subsections below are time averaged. After about 20 s of
simulated time, a stable operating regime was established. It was shown
that these first 20 s of every simulation introduced considerable noise to
the averaging process and were therefore left out in the time averaging. The
simulations on the coarse mesh were averaged over 180 s (from 20 s to 200 s).
The simulations on the finer mesh were averaged over 120 s (from 20 s to
140 s) in view of the required computational efforts.
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Table 5.1: Overview of the simulations. Flux scheme : UP Upwind, BA Barton. Closure relations A:Delnoij
(1999), B:Tomiyama (1998)

case. mesh Vsup [mm/s] db [mm] ∆t closure flux-scheme LES encounter model
1 15 × 15 × 90 2.4 3.0 0.001 A UP
2 25 × 25 × 90 2.4 3.0 0.001 A UP
3 25 × 25 × 90 2.4 3.0 0.001 A BA
4 25 × 25 × 90 2.4 3.0 0.001 A BA

√

5 15 × 15 × 90 2.4 6.0 0.001 A UP
6 15 × 15 × 90 2.4 6.0 0.001 B UP
7 15 × 15 × 90 5.0 6.0 0.001 B BA

√

8 15 × 15 × 90 5.0 6.0 0.001 B BA
√ √

9 15 × 15 × 90 2.4 3.0 0.001 B BA
√ √

10 15 × 15 × 90 2.4 3.0 0.0005 B BA
√ √
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Case 1 : Base case / Delnoij Model

This model was extensively discussed by Delnoij (1999) and is used as a
starting point to inspect the effects of the proposed modifications. In figure
5.4 the vertical liquid velocity, the liquid standard deviation value and the
vertical gas velocity are presented at four different heights, for this case.
Firstly the dependence on grid size and time step were studied. Figure 5.5
shows two simulation results where the number of computation cells was
changed from 15×15×90 to 25×25×90 (case 2). Although the grid size did
effect the simulation results to some extent, possibly because of the smaller
averaging time for the finer grid, it is believed that quite reasonable results
can be obtained with the relatively coarse grid. In figure 5.6 simulation
results using different time-steps3 are shown. The time-step was changed
from 10−3 s to 5 ·10−4 s. In the lower section of the column the differences in
the calculation results are minimal, while in the upper section the differences
are somewhat larger, but still relatively small, indicating a small start-up
effect. It is concluded that with the coarse grid and the larger time-step
quite acceptable results can be obtained.

Case 3: Effect of flux scheme

Replacing the Upwind flux scheme, as used in cases 1 and 2, by a second order
accurate Barton flux scheme to discretise the convection terms has a small
effect on the flow pattern of the two phases. When the Barton flux scheme
was applied, a small decrease in gas velocity was observed. The maximum
mean liquid velocity decreased from about 0.15 m/s to about 0.12 m/s.
From previous work (e.g. Rider et al. (1995)) it is known that the gas-phase
velocity field is strongly effected by the flux-model, while the liquid phase
velocity field is was hardly effected. In our Lagrangian modelling of the gas
phase the discrete bubbles are tracked very accurately. Hence, only a small
improvement in the description of the continuous phase is observed.

3These simulations were conducted with the a version of the DBM code where all new
elements were included.
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Figure 5.4: Case 1: base case.
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Figure 5.5: Vertical liquid velocity at 0.54 m computed on a course and a
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Case 4: Effect of the LES turbulence model

In case 4 an LES turbulence model was introduced. The liquid phase velocity
profile, shown in figure 5.7, shows a slight decrease in the velocity as compared
to the previous cases where the turbulent viscosity was ignored. Especially
the maximum velocity in the lower part of the column has decreased and has
become much more flat. With the LES turbulence model the variation of
the gas velocity as a function of the axial coordinate increased, which could
be caused by an increased start-up effect. The standard deviation values
decreased to about one third of the value of the previous case indicating a
decreased dynamic behaviour of the bubble column. All these effects can be
explained by the increase in viscosity that was introduced by the turbulence
modelling.

Cases 5-6: Effect of the bubble diameter and the bubble closure
relations

For case 5, a bubble diameter of 6 mm was used because this is closer to the
experimentally observed bubble sizes. When using the same drag relation as
Delnoij (1999), which were taken from Clift et al. (1978), larger bubbles have
a higher terminal velocity than smaller bubbles (see table 5.2). In figure 5.10
b, this increased gas velocity can be recognized. The mean vertical liquid
velocity has decreased (see figure 5.10 a). This can be explained by the
decrease in total cross-section area of the bubbles. The volume of the bubbles
increases with d3

b , while the cross section area increases by d2
b . Consequently,

using a constant gas loading, the number of bubbles decreases more rapidly,
when assuming larger bubbles, than the decrease in the total cross-section
area. Therefore, the total drag-force exerted on the liquid phase decreases,
resulting in a decreased mean liquid velocity.

The introduction of new closure relations effects the mean position of the bub-
ble plume. In figure 5.9 a snapshot of the bubble positions, simulated using
the Delnoij (1999) and the Tomiyama (1998) closure relations is shown. With
the Tomiyama closure relations the bubble plume remains more concentrated
and is less spread over the cross-section of the column. The homogeneous
top region observed with Delnoij closures is almost absent. Consequently,
the liquid and gas velocities near the centre of the column have increased,
resulting in a slightly different velocity distribution, as is shown in figure
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Figure 5.7: Case 4: refined grid using the Barton flux scheme and the LES
model.
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Figure 5.8: Case 5: bubble diameter 6 mm bubbles.
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(a) Delnoij closures (b) Tomiyama closures

Figure 5.9: Distribution of the bubbles using the Delnoij closures (a) and the
Tomiyama closure relations(b).(Case 5 and 6)
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Figure 5.10:

Liquid and gas velocity at z = 0.54 m for the cases 1,5,6 and 8.
case 1: Delnoij base case.
case 5 db = 6 mm; Vsup = 2.4 mm/s; Delnoij Closures.
case 6 db = 6 mm; Vsup = 2.4 mm/s; Tomiyama Closures.
case 8 db = 6 mm; Vsup = 5.0 mm/s; Tomiyama Closures, LES-model,
encounter model.
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Table 5.2: Terminal rise velocity of bubbles using different diamters and
different drag relations.

db [mm] v∞ [m/s] v∞ [m/s]
Clift et al. (1978) Tomiyama (1998)

4 0.34 0.39
6 0.42 0.38

5.10.

Case 7-8: Effect of superficial velocity and encounter model

In case 7 the superficial gas velocity was increased from 2.4 mm/s to 5.0 mm/s.
Because of the high void fractions that occur at these high gas loadings, this
simulation, without the encounter algorithm, crashed after about 16 s simu-
lated time, as was expected.

In case 8 the encounter algorithm was incorporated and consequently the
void fractions that occur at this high gas velocity (5 mm/s) could be com-
puted without any computational difficulties. For the higher superficial gas
velocity with the encounter model, the mean gas velocity was hardly effected,
however, the mean vertical liquid velocity has increased strongly, especially
in the centre of the column.

Case 9: Comparison of the Delnoij model with the improved model

When the results of the base case (case 1) are compared to a simulation
with all new features switched on all the effects described above are found
simultaneously. The bubble plume narrows, resulting in increased gas and
liquid velocities near the plume. The mean velocity of both phases has de-
creased slightly as a result of the LES turbulence modelling. As a side effect
of this, the standard deviation velocity has slightly decreased indicating a
less dynamic behaviour of the plume.
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Figure 5.11: Case 8: high superficial gas velocity using the encounter model.
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5.5.1 Comparison to experimental results.

The simulation results of case 8 were compared to experimental data and
show a quite reasonable correspondence at higher axial positions in the col-
umn. The liquid as well as the gas velocity in the lower part of the column is
strongly over-predicted. The over-prediction of the gas velocity is probably
due to the high void fraction at the relatively high superficial gas veloc-
ity. The closure relations should be adapted to accommodate these high
void fractions. The over prediction of the liquid velocity has most likely
the same origin. The standard deviation values predicted by the model are
also slightly high compared with the experimental data, pointing towards an
over-prediction of the dynamics in the column. These results could indicate
that the total viscosity of the system is under predicted, probably caused
by an under-prediction of the turbulence. Another option could be that the
assumed fully elastic encounters of the bubbles generate too high bubble
velocities.

5.6 Concluding remarks

Firstly it was shown that with the selected grid size, time-step and averaging
time quite reasonable results could be obtained. The introduction of the
Barton second order accurate limited flux scheme for the discretisation of the
convection terms had a minor effect on the distribution of the liquid velocity.
The increase by the LES turbulence modelling resulted in a lower and more
flat liquid phase profile and strongly decreases the standard deviation values.
The incorporation of the new closure relations for the forces acting on the
bubbles narrows the bubble plume and consequently the velocities near the
plume increased. This effect will probably increase when a size distribution
is applied to the bubble diameter. The introduction of the Barton second
order accurate limited flux scheme and the LES turbulence model had a
minor effect on the distribution of the liquid velocity. The introduction
of a collision model, enabled simulation of bubble columns with high gas
loadings. The comparison to experimental data showed that the model over
predicts the gas and liquid velocities in the lower part of the column, while
at the top section the predictions are reasonably accurate. Further research
is needed to investigate closure relations that account for high void fractions,
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the elasticity of the bubble encounters and an accurate evaluation of the local
effective viscosity.
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Chapter 6

Concluding remarks and
outlook to future developments

In this final chapter, the concluding remarks of this study are summarised
and in the final section new challenges in the field of modelling bubbly flows
are discussed. Along with this outlook possible paths to reach these new
objectives are proposed.

6.1 Conclusions: Detailed models

In this study both a VoF and a Front Tracking model were successfully
implemented in a computer code. Within the constraint of 0.5 <Eö< 40 and
the computational limits in time and computer capacity as used in this study,
these models perform very well. The applicability window can probably be
enlarged if sufficient fine grids are applied. The advances that were made
during development of these codes includes the incorporation of:

for Front Tracking :

• a flow solver algorithm that can handle very high density ratios

• a straightforward implementation of the surface tension model based
on interfacial tensile forces

• an integrated version of the Peskin smoothing function
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• an energy minimisation algorithm

• and an algorithm that can re-construct the interface mesh in a number
of very exceptional cases.

for VoF :

• a newly developed surface tension algorithm based on the interfacial
tensile forces between adjacent surface elements

• a smoothing function for computing the normal to the interface, the
local density and the local viscosity

• a correction for the computed fluxes

• the computation of the local viscosity is now based on the harmonic
averaging of the kinematic viscosity.

Both codes are capable of evaluating two fluid systems with a density ratio
of up to 104. This was achieved by using a non-conservative form of the
Navier-Stokes equation that treats the local density explicitly in time. The
error that is introduced by this scheme is relatively small as a result of the
small time steps that are applied in the simulations(10−5 s).

In the Front Tracking-model the surface tension model of Unverdi and Tryg-
gvason (1992) has been simplified. The approach presented in this study does
not need the creation of the curved surface over every interface element. This
reduces the amount of computational work which is needed for two reasons.
Firstly, the computation of the mean value of the tensile stresses between
two adjacent surface elements is avoided. Secondly, the evaluation of the
stresses on segments of the curved interface representation is not needed. It
was shown that the excess pressure inside the bubble was predicted equally
well by this new method as by the original method used by Unverdi and
Tryggvason (1992).

The newly introduced surface energy minimisation performs well and results
in a smoother interface. It reduces the number of ‘sharp’ angles between
interface elements. This results in less excessive local tensile forces which
has a stabilising effect on the numerics.
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The last improvement to the model is the addition of an algorithm that is
able to take out a few interface mesh problems that can cause numerical
problems that make the code crash.

In the VoF -model, the introduction of a new surface tension algorithm that is
also based on the tensile stresses between the interface segments has replaced
the frequently applied CSF model of Brackbill et al. (1992). The algorithm
gives very accurate results in predicting the excess pressure inside the bubble
and can cope with highly curved interfaces.

A second major improvement is the use of a smoothened colour function
for the computation of the orientation of the interface segments. For the
calculation of the volume beneath the interface, the non-smoothed colour
function is applied. This results in a better connectivity of the adjacent sur-
face elements. For the smoothening, an integrated version of the smoothing
function of Peskin (1977) is applied. This has the advantage of being non
iterative method, oppose to the iterative methods previously published in
the literature (see e.g. (Rider and Kothe, 1998)).

6.1.1 Comparison of the models

The bubble shapes predicted by both models correspond well in agreement
with the shapes reported in literature. The VoF -model is superior in its
inherent conservation of the gas volume. It also predicts, if compared to the
Front Tracking-model, a more dynamic behaviour of the interface, resulting
in an more dynamic bubble motion.

Bubbles simulated using the Front Tracking-method have a slightly smaller
terminal rise velocity. This is probably caused by the relative wide compu-
tational stencil that is used to compute the velocity at the location of the
node’s. The VoF -model evaluates the motion of the interface based on the
flux through the cell faces. This flux is computed using the staggered ve-
locity data at the cell faces. In Front Tracking however, the local velocity a
the location of a node is computed using a smooth delta function. The local
velocity is the weighted average of the fluid velocity at a number of cells
surrounding the node. This could have a stabilising effect on the interface
dynamics.
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6.2 Conclusions: Discrete Bubble Models

The three-dimensional discrete bubble model was improved by the introduc-
tion of four-way coupling, new closure relations, a second order limited flux
scheme and a LES turbulence model.

The introduction of the four way coupling enabled the simulation of a higher
gas throughput through the column. Simulations with superficial gas veloc-
ities up to 15 mm/s were conducted. The new closure relations changed
the topology of the bubble plume. The bubble plume was narrowed and the
liquid velocity near the plume consequently increased. The incorporation of
the second order accurate Barton flux scheme had little effect on the overall
flow behaviour since the behaviour of the gas phase was already described in
great detail. The LES model effectively increased the viscosity resulting in
lower liquid velocities and decreased column dynamics.

Comparison with experimental data showed that the numerical results are
reasonably accurate in the more dispersed regions of the column. The veloc-
ities in the regions where the bubble concentration is high is somewhat over
predicted.

6.3 Outlook: detailed models

6.3.1 Single bubble systems

In future research the detailed models Front Tracking and VoF, that were
developed in this study, could be applied to test or even derive closure rela-
tions for less detailed models such as DBM or any other Euler-Lagrangian
or Euler-Euler model. This could be achieved by performing computations
using a number of selected ‘canonical’ flow patters which isolate the effect of
one single closure relation. For example, from a bubble rising in a stagnant
liquid the drag force on that bubble can be evaluated and from its accelera-
tion the virtual mass force could be obtained. An other example could be to
study the lift force by releasing a bubble in a shear flow.

A second subject that would be of interest to study is the influence of a
number of bubbles on the behaviour of the other bubbles. Tryggvason (1999)
and Tomiyama (1998) have reported some work in this field but only for a
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limited number of configurations.

6.3.2 Multiple bubble systems

Multiple bubble systems are the next challenge in detailed modelling. Closure
relations used in Euler-Lagrangian and Euler-Euler models often ignore the
presence of surrounding bubbles. By using detailed models such as VoF and
Front Tracking, simulations can be run to study the influence of neighbouring
bubbles on the shape, dynamics and the collective behaviour of the rising
bubbles.

In this section two simulations of systems with more than one bubble are
shown. The physical properties that were used in these simulations are
listed in table 6.1. When considering systems with more than one bubble, a
few remarks concerning break-up and coalescence of bubbles must be made.
VoF -models are, up to now, only able to compute one interface within each
computational cell. Consequently, if two interfaces move into the same com-
putational cell, they will be detected as a single interface leading to artificial
coalescence. The same problem emerges with respect to breakage of bubbles.
Bubbles only break if one cell between the two new bubbles is almost empty.
In other words, in VoF all fluids are ‘super-coalescent’: bubbles that hit each
other always coalesce. The VoF method should be extended to allow for two
or more interfaces in one cell to overcome this problem. Once this has been
achieved, subgrid models should be develloped to incorporate the pressure
build up between the bubbles in the momentum equations.

In Front Tracking this problem does not occur the same way. This is due
to the fact that each interface is represented by its own unstructured mesh.
The different meshes do not interact with each other, even when the meshes
pass each other. In Front Tracking this could be overcome by writing an
algorithm that can create a connection between the meshes of the different
bubbles. Since the meshes are unstructured, this could be a arduous task.
Whether interfaces merge or break, could be determined by computing the
total energy of the new structure. If the newly formed mesh has a lower
total energy than this new mesh is preferred over the previous one. If not
the re-meshing should be reversed. The Front Tracking model would also
need a subgrid model to include the pressure build-up between the bubbles
in the momentum equations.
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Table 6.1: Physical and numerical data used in the multiple bubble experi-
ments.

bubble diameter de 0.006 m
dimensionless numbers log (Mo) −3.2

Eo 5.7
liquid phase ρ 1230 kg/m3

µ 0.023 Pa.s
gas phase ρ 1.29 kg/m3

µ 17.1 · 10−6 Pa.s
σ 0.0759 N/m

column number of cells 60 × 60 × 60
dimensions 0.025 × 0.025 × 0.025 m3

The multiple bubble systems that will be shortly discussed here are:

• co-axial rising bubbles

• adjacent rising bubbles

Two co-axial bubbles

Two bubbles with de = 6 mm were released in the centre of the column
at a mutual vertical distance of 6 mm from each other. Figure 6.1 shows
the development of the two bubbles in time. The upper bubble develops
to its normal shape as if no other bubbles were present. Under influence
of the vortices behind the leading bubble, the tailing bubble is deformed, it
accelerates and slowly catches up with the first bubble. Finally the bubbles
coalesce.

Two Adjacent bubbles

The same bubbles which were used in the previous section were released next
to each other in a 0.021 m× 0.021 m× 0.021 m box, using 70× 70× 70 grid
cells. The distance between the two centres of mass was 0.0080 m. From
their originally spherical shape the bubbles develop to the ellipsoidal shape
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Figure 6.1: Two co-axial rising bubbles, with their shape evolution and de-
veloping flow field using the full three dimensional VoF algorithm. During
the simulation the computational domain is moved with the centre of mass
of the two bubbles.
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Figure 6.2: Two adjacent bubble rising in a spiralling motion. t = 0.005,
0.0075, 0.01, 0.0125, 0.015, 0.0175 s

as expected from Grace’s bubble diagram (Grace, 1973). As a result of the
interaction between the bubbles the bubbles start a wobbling motion and a
spiralling path. The simulation results are shown in figure 6.2.

6.3.3 Discussion

Within the operating window previously given, the VoF algorithm can be
used to study systems containing multiple bubbles, resulting in data on the
influence which neighbouring bubbles and their wakes have on each other.
Details on bubble collision, break-up or coalescence can only be described
with the VoF algorithms, if a more fundamental sub-grid model of these
phenomena is included in the code. If two bubbles are released in a co-axial
configuration, the tailing bubble catches up with the leading one resulting in
coalescence of the bubbles. If two adjacent bubbles are released, the model
predicts a spiralling motion.
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Studying the dynamics of coalescence or break-up would involve a more de-
tailed description of the interface dynamics. In the VoF -model the break-up
and coalescence now occur as a result of the numerics and break-off errors.
An algorithm to give the occurrence of these phenomena a sound physical
basis should be developed to be able to simulate these phenomena. A first
step to obtain this would be the development of an algorithm that allows
more than one interface in a cell to avoid immediate merging of the inter-
faces if two interfaces enter a cell. For Front Tracking it is already possible
to have more interfaces within one cell. Here the problem is to restructure
the three dimensional interface mesh. A good starting point for coalescence
could be the computation of the surface energy which was introduced in this
thesis. Two interfaces only merge if the total energy of the newly formed
interface is less than the energy of the original interface.

6.4 Outlook: Discrete Bubble Modelling

Discrete Bubble Models can already be applied to compute laboratory scale
bubble columns. Refining the closure relations for the forces acting on the
bubbles is still of major interest. New elements that should be introduced,
include the treatment of bubbles that have a diameter larger than the cell
spacing. In particular the interpolation of the local velocity for this size of
bubbles and the treatment of the coupling from the discrete to the continuous
phase is not clear.

Coalescence and break-up models should be studied and could be imple-
mented in this code. This would make the model more versatile.

DBM could be combined with one of the detailed models to model a wide
range of bubble diameters. The larger bubbles are dynamic and have a large
impact on the flow patterns. The smaller, almost spherical bubbles only
follow the flow and therefore are probably reasonably accurately described
by closure relations. A further reason to treat small bubbles as discrete
elements, is that smaller bubbles are hard to handle in detailed codes. The
resulting information from these computations is probably not worth the
computational effort needed to do so. Nevertheless, in case of mass-transfer,
the small bubbles would be of great importance.

Apart from improving the fluid flow dynamics it would be interesting to
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incorporate heat transfer, mass transfer and the treatment of chemical reac-
tions. With this addition, the models can be applied to simulate real live
chemical engineering problems. This could also be used to improve the phys-
ical product properties. Density, viscosity and especially surface tension of
solutions could be computed more accurately.

6.4.1 Code optimisation and speed-up of the simula-

tions

All the codes that were used in this study are still very time consuming
(order of weeks or months on state of the art hardware). Specially if a
sufficiently fine mesh is applied. The required CPU time could probably
be reduced by better coding and applying smarter mathematical approaches
such as (algebraic) multi grid methods to solve the Navier-Stokes equation or
a ghost fluid method to separate the phases. To reduce the ‘wall clock time’,
speed up could be achieved by making use of parallel hardware. The PVM
1 and the MPI 2 techniques are especially suitable for doing this, since they
can be applied on a variety of parallel computers or clusters of computers.

6.4.2 Final remarks

In this thesis a large number of improvements have been introduced to differ-
ent codes. These improvements were needed to compute a number of things
which had not previously been possible. It will always be possible and ne-
cessary to improve the physics behind these models, but computer books are
comparable to good books: they are only of use when read. The objective
is never the code itself but the simulation results obtained with it. Com-
paring the simulation results with good experimental data, the weak points
of the codes can be found and new ideas about the underlying physics can
be generated. These can then be applied to further improve the predictive
capability of the codes.

1Parallel Virtual Machine
2Message Passing Interface



Nomenclature

A surface area m2

C constant
d diameter m
D() Dirac-δ-function
Eo Eötvos number
f liquid fraction/ colour or indicator function
F force N
g constant of gravity m/s2

h grid spacing m
h intersection allong the axis
l length of edge between two elements m
L length of computational domain m
D width of the computational domain m
Mo Morton number
n normal vector
p presure Pa
R,r radius m
r coordinate m
Re Reynolds number
s length m
sl surface area m2

S strain tensor
t time s
t tangent vector
u liquid velocity m/s
v bubble velocity m/s
V volume m3

x,y,z coordinate m
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Greek

α angle rad
Γ bubble momentum N.m
ε liquid fraction
ρ density kg/m3

σ surface tension constant N/m
κ curvature m−1

µ dynamic viscosity Pa.s
ν velocity of sound m/s
Ψ stream function

Subscripts

b bubble
d drag
e interfacial pull
eq equivalent
g gas
g gravity
i, j between element i and j
l liquid
l surface element edge
l lift
max maximum
min minimum
mix mixing length
p pressure
s Smagorinski
vm virtual mass
st surface tension
tot total
x x-direction
y y-direction
z z-direction



Appendix A

Interface reconstruction in
3D-VOF

A.1 Introduction

In this appendix all the equations needed in 3D-VOF to reconstruct the
interface and to calculate the fluxes are given. To limit the number of cases,
all components of the normal ~n to the interface will be taken positive and
it is assumed that the void fraction in a given cell is always smaller than
0.5. Furthermore it is made sure that the components of ~n always satisfy
n1 < n2 < n3. ny ≤ nz. If one of these conditions is not full filled the
interface will be rotated of translated in such a way that all the conditions
are full-filed and after calculation of the fluxes these will be re-rotated. The
rotations are explained in appendix B. In this appendix it is assumed that
the size of the cell is unity which can be achieved via proper normalisation
of the coordinates. (1 × 1 × 1).

A.2 Determination of the surface element type

The determination of the surface element type is identical to the one used
by D.L. Youngs (Youngs, 1987). Nevertheless the key issues will be given
here. Young distinguishes the five surface elements types shown in figure A.1.
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In the next paragraphs the variables h0, h1 and h2 represent the distances
from the origin of a given cell to the intersection point of the plane with
respectively the x, y and z-axis of the computational cell. Due to the rotations
and translations h0 ≤ h1 ≤ h2.
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h0

h1
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p
q
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r
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h1

h2

p1 p2

p3

Figure A.1: The five surface element types.

In table A.1 the selection criteria for each type are given. A few cases need
special attention. This is when one of the normal-vector components is 0.
If e.g. n0 = 0 and n1 = 0. This means that a horizontal plane is present
corresponding to an interface element of type 5. If n0 = 0 and fi,j,k ≤ n1

2n2

the
interface type is 2. If the last inequality is not fulfilled the interface element
type is 5 again.

A.3 Calculation of the fluxes

Once the interface element type is known and the flow field is known the
fluxes through the cell faces can be computed which in principal can occur
through all six cell faces. Since the fluxes are calculated at the cell faces,
only the outwardly directed fluxes need to be evaluated. In the next sections
the calculation of these outward fluxes in all possible directions and for all
five surface element types will be given.
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Table A.1: Selection criteria for surface element types.
type criteria
1 6fn0n1n2 ≤ n0

3

2 n0
3 < 6n0n1n2f ≤ n1

3 − (n1 − n0)
3

3

n0 + n1 ≥ n2

and

n1
3 − (n1 − n0)

3 < 6fn0n1n2 ≤ n2
3 − (n2 − n0)

3 − (n2 − n1)
3

or
n0 + n1 < n2

and

n1
3 − (n1 − n0)

3 < 6fn0n1n2 ≤ (n0 + n1)
3 − n0

3 − n1
3

4

n0 + n1 ≥ n2

and

n2
3 − (n2 − n0)

3 − (n2 − n1)
3 ≤ 6fn0n1n2

5

n0 + n1 ≤ n2

and

(n0 + n1)
3 − n0

3 − n1
3 < 6fn0n1n2

h0

h1

h2

Figure A.2: Type 1.
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Table A.2: Fluxes for type 1 surface element.
cell face criteria flux figure
north vn∆t ≤ 1.0 − h0 Fn = 0

vn∆t > 1.0 − h0 Fn =
(

h0+vn∆t−1

h0

)3

south −vs∆t ≥ h0 Fs = f

−vs∆t < h0 Fs = f
(

1 −
(

h0+vs∆t
h0

)3
)

west vw∆t ≤ 1.0 − h1 Fw = 0

vw∆t > 1.0 − h1 Fw =
(

h1+vw∆t−1

h1

)3

A.2

east −ve∆t ≥ h1 Fe = f

−ve∆t < h1 Fe = f
(

1 −
(

h1+ve∆t
h1

)3
)

A.2

top vt∆t ≤ 1.0 − h2 Ft = 0

vt∆t > 1.0 − h2 Ft =
(

h2+vt∆t−1

h2

)3

bottom −vb∆t ≥ h2 Fs = f

−vb∆t < h2 Fb = f
(

1 −
(

h2+vb∆t
h2

)3
)

h0

h1

h2

p
q

Figure A.3: Type 2 flux through north or south face.
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Table A.3: Fluxes for type 2 surface element.

cell face criteria flux figure

north

F = 1

6
[− (pq (h0 − 1))

+ (p1q1 (h0 − 1 + v0∆t))]
with

q = h2

h0

(h0 − 1)

p = h1

h0

(h0 − 1)

p1 = p + v0∆th1

h0

q1 = q + v0∆th2

h0

A.3

south

F = f − 1

6
[(h0 + v0∆t) p1q1

−pq (h0 − 1)]
with

q = h2

h0

(h0 − 1)

p = h1

h0

(h0 − 1)

p1 = p + (1 + v0∆t) h1

h0

q1 = q + (1 + v0∆t) h2

h0

A.3

west vw∆t ≤ 1 − h1 Fw = 0

1 − h1 < vw∆t ≤ 1 − p Fw = 1

6

h0h2

h2

1

(h1 + vw∆t − 1)3 A.4a

1 − p < vw∆t Fw = f − 1−vw∆t
4

[

2h2 + 2q − 2 (1 − v1∆t) h2

h1

]

A.4b

east −ve∆t ≥ h1 Fe = f

p ≤ −ve∆t < h1 Fe = f − 1

6

h0h2

h2

1

(h1 + ve∆t)3 A.4b

p > −ve∆t Fe = −ve∆t
4

[

2h2 + 2q − 2 (−ve) ∆th2

h1

]

A.4a

top vt∆t ≤ 1 − h2 Ft = 0

1 − h2 < vt∆t ≤ 1 − q Ft = 1

6

h0h1

h2

2

(h2 + vt∆t − 1)3

1 − q < vt∆t Ft = f − 1−vt∆t
4

[

2h1 + 2p − 2 (1 − vt∆t) h1

h2

]

bottom −vb∆t ≥ h2 Fb = f

q ≤ −vb∆t < h2 Fb = f − 1

6

h0h1

h2

2

(h2 + vb∆t)3

q > −vb∆t Fb = −vb∆t
4

[

2h1 + 2p − 2 (−vb) ∆th1

h2

]
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Figure A.4: Type 2 flux through west or east face
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Figure A.5: Type 3 flux through north or south face.
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Table A.4: Fluxes for type 3 surface element.

cell face criteria flux figure

north vn∆t ≤ 1 − q Fn = 1

6

h1h2

h2

0

[

(h0 − 1 + vn∆t)3 − (h0 − 1)3
]

A.5a

vn∆t > 1 − q Fn = f − 1−vn∆t
4

[

2p + 2h2 − 2(1 − vn∆t)h2

h0

]

A.5b

south (−vs)∆t ≤ q Fs = −vs∆t
4

[

2p + 2h2 − 2(−vs∆t)h2

h0

]

A.5b

(−vs)∆t > q Fs = f − 1

6

h1h2

h2

0

[

(h0 + vs∆t)3 − (h0 − 1)3
]

A.5a

west vw∆t ≤ 1 − s Fw = 1

6

h0h2

h2

1

[

(h1 − 1 + vw∆t)3 − (h1 − 1)3
]

vw∆t > 1 − s Fw = f − 1−vw∆t
4

[

2r + 2h2 − 2(1 − vw∆t)h2

h1

]

east (−ve)∆t ≤ s Fe = −ve∆t
4

[

2r + 2h2 − 2(−ve∆t)h2

h1

]

(−ve)∆t > s Fe = f − 1

6

h0h2

h2

1

[

(h1 + ve∆t)3 − (h1 − 1)3
]

top v2∆t ≤ 1 − h2 Ft = 0

1 − h2 < v2∆t ≤ 1 − r Ft = 1

6
(h2 + v2∆t − 1)3 h0h1

h2

2

A.6a

1 − r < v2∆t ≤ 1 − p
Ft = 1

6

h1

h2

h0

h2

[

ε3 −
(

ε − h2

h0

)3
]

with
ε = h2 + vt∆t − 1

A.6b

1 − p ≤ v2∆t

Ft = 1

6

h0h1

h2

2

[

(h2 + vt∆t − 1)3 −
(r + vt∆t − 1)3 −
(p + vt∆t − 1)3

]

A.6c

bottom −vb∆t ≥ h2 Fb = f

h2 > −vb∆t ≥ r Fb = f − 1

6

h1

h2

(h2 + vb∆t)3 A.6a

r > −vb∆t ≥ p
Fb = f − 1

6

h1

h2

h0

h2

[

α3 −
(

α − h2

h0

)3
]

with
α = h2 + vb∆t

A.6b

p > −vb∆t

Fb = f −
[

1

6

h0h1

h2

2

(

(h2 + vb∆t)3 −
(p + vb∆t)3 −
(r + vb∆t)3

)]

A.6c
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Figure A.6: Type 3 flux through top or bottom face.
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Table A.5: Fluxes for type 4 surface element.

cell face criteria flux figure

north v0∆t ≤ 1 − q Fn = 1

6

h1h2

h2

0

[

(h0 − 1 + vn∆t)3 − (h0 − 1)3
]

A.7a

1 − q < v0∆t ≤ 1 − s
Fn = 1

6

h1h2

h2

0

[

(h0 + vn∆t − 1)3 − (h0 − 1)3

− (q + v0∆t − 1)3
] A.7b

1 − s < v0∆t
Fn = 1

6

h1h2

h2

0

[

(h0 + vn∆t − 1)3 − (h0 − 1)3

− (q + vn∆t − 1)3 − (s + vn∆ − 1)3
] A.7c

south −v0∆t ≤ s
Fs = f − 1

6

h1h2

h2

0

[

(h0 + vs∆t)3 − (h0 − 1)3

− (q + vs∆t)3 − (s + vs∆t)3
] A.7c

s < −v0∆t ≤ q
Fs = f − 1

6

h1h2

h2

0

[

(h0 + vs∆t)3 − (h0 − 1)3

− (q + vb∆t)3
] A.7b

q ≤ −v0∆t Fs = f − 1

6

h1h2

h2

0

[

(h0 + vs∆t)3 − (h0 − 1)3
]

A.7a

west vw∆t ≤ 1 − t Fw = 1

6

h0h2

h2

1

[

(h1 − 1 + vw∆t)3 − (h1 − 1)3
]

1 − t < vw∆t ≤ 1 − r
Fw = 1

6

h0h2

h2

1

[

(h1 + vw∆t − 1)3 − (h1 − 1)3
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Figure A.7: Type 4 flux through north or south face.
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Figure A.9: Type 5 flux through top or bottom face.
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Table A.6: Fluxes for type 5 surface element.

cell face criteria flux figure
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Table A.7: Fluxes for type 5 surface element.(continued)
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Appendix B

Translation

In this appendix the forward and backward rotation and translation of the
interface element is explained. The forward translation is meant to place the
surface elements in one standard case position. This involves only changes
in the sign and the values of the vector components within the vector. By
backward translation, the transition from the standard case position to the
original orientation is meant. This involved the fluxes and tangent vectors
needed for the new surface tension model.

B.1 Forward translation

In this section the steps taken to place the interface in a standard case position
are explained. To limit the number of surface elements types to five , there is
a need to only have positive components in de normal to the interface ~n and
that the distance between the origin of the cell and the intersection points of
the interface with the axis are in a certain order. This is done in two steps.

In the first step all components of ~n are made positive. This ensures that the
liquid volume is always in the same corner as the origin of the cell. When a
component of the original vector is negative the absolute value is taken and
at the same time the the translation is registered in the variable rx,ry or rz
for every cell.

The second step is to place the surface element in such a way that the largest
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distance between the origin of the cell and the intersection point of the axis
and the interface is at the x-axis, the middle one at the y-axis and shortest
is along the z-axis. Because this length is proportional to 1

ni
this is done by

putting the shortest vector component at the position of the x-component,
the middle one at the position of the y-component and finally the largest at
the position of the z-component. This rotation is again registered for every
cell. This is done in the variable rnx,rny and rnz.

In the standard case position the axis are not called x,y and z but, for the
sake of clarity, 0, 1 and 2. So if the shortest distance between origin and
intersection point is on the x-axis, it is transfered to the 2-axis and rnx = 2.

In this way, the normal is given such a direction that the surface element
is always in the standard case position and all the information about the
translation is stored in rx,ry,rz and rnx,rny and rnz.

Once this translation is known, the velocities on all cell faces are rotated also.
This is done for every cell just before the calculation of the fluxes through
the cell faces.

B.2 Backward translation of fluxes

Once the fluxes for the standard case position are calculated, they must be
re-translated to the original system. This is again done in two steps, but now
in reverse order. First the axis are put on the real position and second the
direction is fluxes are assigned to the right positive and negative cell faces.

If for example the rnx = 2 and rx = −1 than first the fluxes calculated in
the standard case position for the top and the bottom of the cell are assigned
to the north and the south respectively. rx = −1 means that in the original
system the volume fraction was situated opposite of the origen of the cell.
So the back and front flux are swapped.
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B.3 Backward translation of the tangent vec-

tors

The new proposed surface tension model needs tangent vectors along the edge
of the surface elements. These tangent vectors are calculated during the type
selection. Since this is done for a standard case position, these vectors are
also given in standard case position. In this section the translation of these
vectors to the original system is given. This is just like in the last section
done in two steps. First the vectors are translated to right axis and secondly
the are swapped if needed.

B.3.1 Translation to original axis

In this re-translation there are six possible options. The first one is made
visible in figure B.1. If the 0-axis has to be transformed to the z-axis , two
options stay open. The first one is the the 2-axis is being transformed to the
x-axis and the 1-axis stays where it is (middle), or the 3-axis is transformed
to the y-axis and the 1-axis is transformed to the x-axis(right).

The transformation of the vector is given in table B.1. In this table the vector
on i + 1

2
is called ~tnorth, on i − 1

2
is called ~tsouth, j + 1

2
is called ~teast etc.

B.3.2 Swapping the back and front.

During the translation only the sides of the cell were changed (if needed).
(i + 1

2
was changed with i − 1

2
, j − 1

2
was changed with j + 1

2
, etc.) In the

tables B.2, B.3 and B.4 the translation to be performed are given. On the
top row of each table the new tangent vector is indicated. In the second row
it is explained how this vector is constructed.
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Figure B.1: without translation(left top) with two possible rotations(right
top and lower)
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Table B.1: summary of all re-translations
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Table B.2: summary of re-translations north-south change
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Table B.3: summary of re-translations east-west change
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Table B.4: summary of re-translations top-bottom change



Appendix C

Results for the parameter study
with the Front Tracking model

In this appendix the Front Tracking figures referred to in table 4.3 and table
4.1 are given. In figure C.1 the diagram of Grace (1973) is given with the
approximate points that were computed here.

In the figures below, the left side graph presents the final (steady state) shape
of the bubble, while the graph on the right side shows the bubble velocity in
x, y and z-direction as a function of time. The simulation was stopped when
a steady velocity was reached.

For all simulations the gas properties of were used (see table C.1. The selected
liquid properties are given in the figures legend.

Table C.1: Physical data of air used in the simulations.

ρ 1.293 kg/m3

µ 17.1 · 10−6 Pa.s
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Figure C.1: Grace’s diagram with the position of the cases for which simu-
lations were carried out.
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Figure C.2: Case 1: liquid parameters : ρ = 864 kg/m3, µ = 1.46 ·10−3 Pa.s,
σ = 0.0278 N/m. Dimensionless numbers : Eo = 0.1 and log(Mo) = −8.6.
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Figure C.3: Case 3: liquid parameters : ρ = 886 kg/m3, µ = 5.80 ·10−2 Pa.s,
σ = 0.0207 N/m. Dimensionless numbers : Eo = 1.0 and log(Mo) = −1.8.
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Figure C.4: Case 4: liquid parameters : ρ = 1262 kg/m3, µ = 5.50·10−2 Pa.s,
σ = 0.0792 N/m. Dimensionless numbers : Eo = 1.0 and log(Mo) = −3.8.
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Figure C.5: Case 5:liquid parameters : ρ = 1380 kg/m3, µ = 1.04·10+1 Pa.s,
σ = 0.0956 N/m. Dimensionless numbers : Eo = 10.0 and log(Mo) = 5.
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Figure C.6: case 6: liquid parameters : ρ = 813 kg/m3, µ = 5.6 · 10−3 Pa.s,
σ = 0.0245 N/m. Dimensionless numbers : Eo = 1.0 and log(Mo) = −6.1.
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Figure C.7: case 7: liquid parameters : ρ = 723 kg/m3, µ = 2.33 · 10−4 Pa.s,
σ = 0.0159 N/m. Dimensionless numbers : Eo = 1.0 and log(Mo) = −11.
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Figure C.8: Case 8: liquid parameters : ρ = 866 kg/m3, µ = 5.80 ·10−2 Pa.s,
σ = 0.0207 N/m. Dimensionless numbers : Eo = 10.0 and log(Mo) = −1.84.
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Figure C.9: Case 9: liquid parameters : ρ = 1230 kg/m3, µ = 2.37·10−2 Pa.s,
σ = 0.0759 N/m. Dimensionless numbers : Eo = 10.0 and log(Mo) = −5.24.
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Figure C.10: Case 10: liquid parameters : ρ = 880 kg/m3, µ = 2.94 ·
10−1 Pa.s, σ = 0.0280 N/m. Dimensionless numbers : Eo = 10.0 and
log(Mo) = 0.58.
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Appendix D

Results for the parameter study
with the Volume of Fluid model

In this appendix the VoF figures refered to in table 4.1 and table 4.3 are
given. The approximate position of these simulations in the Grace-bubble
diagram (Grace, 1973) is given in figure C.1. For all simulations the physical
properties of air were used for the gas phase (see table D.1). Simulations
were carried out until the velocity became constant.

Table D.1: Physical data of air used in the simulations.

ρ 1.293 kg/m3

µ 17.1 · 10−6 Pa · s

In the figures below, the graph on the left indicates the final shape of the
bubble. The figure on the right shows the bubble velocity in x, y and z-
direction.
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Figure D.1: Case 2: liquid parameters : ρ = 998 kg/m3, µ = 1.00 ·10−3 Pa.s,
σ = 0.0728 N/m. Dimensionless numbers : Eo = 0.1 and log(Mo) = −10.59.
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Figure D.2: Case 3: liquid parameters : ρ = 886 kg/m3, µ = 5.80 ·10−2 Pa.s,
σ = 0.0207 N/m. Dimensionless numbers : Eo = 1.0 and log(Mo) = −1.8.



155

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

ve
lo

ci
ty

 [m
/s

]

time [s]

x-velocity
y-velocity
z-velocity

Figure D.3: Case 4: liquid parameters : ρ = 1262 kg/m3, µ = 5.50 ·
10−2 Pa.s, σ = 0.0792 N/m. Dimensionless numbers : Eo = 1.0 and
log(Mo) = −3.8.
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Figure D.4: Case 5: liquid parameters : ρ = 1380 kg/m3, µ = 1.04 ·101 Pa.s,
σ = 0.0956 N/m. Dimensionless numbers : Eo = 10.0 and log(Mo) = 5.0.
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Figure D.5: Case 6: liquid parameters : ρ = 813 kg/m3, µ = 5.6 · 10−3 Pa.s,
σ = 0.0245 N/m. Dimensionless numbers : Eo = 1.0 and log(Mo) = −6.1.
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Figure D.6: Case 7: liquid parameters : ρ = 723 kg/m3, µ = 2.33 ·10−4 Pa.s,
σ = 0.0159 N/m. Dimensionless numbers : Eo = 1.0 and log(Mo) = −11.
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Figure D.7: Case 8: liquid parameters : ρ = 866 kg/m3, µ = 5.80 ·10−2 Pa.s,
σ = 0.0207 N/m. Dimensionless numbers : Eo = 10.0 and log(Mo) = −1.84.
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Figure D.8: Case 9: liquid parameters : ρ = 1230 kg/m3, µ = 2.37 ·
10−2 Pa.s, σ = 0.0759 N/m. Dimensionless numbers : Eo = 10.0 and
log(Mo) = −5.24.
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Figure D.9: Case 10: liquid parameters : ρ = 880 kg/m3, µ = 2.94 ·
10−1 Pa.s, σ = 0.0280 N/m. Dimensionless numbers : Eo = 10.0 and
log(Mo) = 0.58.



Appendix E

Smoothing with an integrated
Peskin function

To avoid instabilities due to steep gradients near the interface the indicator
function is smoothed. In our codes an integrated version of the smoothing
function proposed by Peskin (1977) has been used. Peskin suggested to use
the following smoothing function.

D (x − x̃) =
1

nh

(

1 + cos
(

π

nh
(x − x̃)

))

(E.1)

In recent years Peskin and McQueen (1994) proposed a numerical approx-
imation of this function to reduce the computational time required for the
evaluation of the indicator function, using a algebraic expression instead of
the cosine function.

D (x − x̃) =











d1 (x − x̃) if |x − x̃| ≤ 1
1

2
− d1 (2 − |x − x̃|) if 1 < |x − x̃| < 2

0 if |x − x̃| ≥ 2
(E.2)

d1(r) =
3 − 2 |r| +

√

1 + 4 |r| − 4r2

8
(E.3)

However, if one of the functions is applied to a discrete domain and integrated
over entire domain, it does not necessarily add up to exactly 1, because the
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nodal value is assumed for the whole integration step (see figure E.1). When
equation E.1 or E.2 is used, a filter must be applied to overcome overshoots
or undershoots in the f (x)-field. Since this filtering effects the f (x)-field, it
indirectly also effects the results of the Navier-Stokes equations. One would
rather use a normalised smoothing function, so that filtering can be avoided.
The smoothing function used in this study uses an integrated version of
equation E.1 that does fulfill this requirement.

D (x − x̃) =
1

2h

[

xj − xi +
nh

π

(

sin
(

π

nh
(xj − x̃)

)

− sin
(

π

nh
(xi − x̃)

))

]

(E.4)

Here xi and xj are the boundaries of the integration steps. The original
Peskin function also uses the height at the centre of the integration step as
the height of the entire step. This could lead to deviations as can clearly be
seen for the most right integration step in figure E.1. The proposed function
is integrated over every integration step and therefore always adds up to
exactly 1. Furthermore, the original Peskin function always takes the width
of the domain to be h. This holds for the 2n − 2 integration steps closest to
the middle of the curve, but the two steps at the ends of the curve could be
either smaller or larger (see figure E.1). It was chosen to limit the integration
steps to 2n.

In the example shown in figure E.1 the integrated function takes the inte-
gration step on the left side of the curve to start at x = −1.8 and end at
x = −0.5. The width of this step is 1.3. On the other end of the curve the
integration starts at x = 1.5 and ends at x = 2.2. The width of this step is
only 0.7. This can be summarised as

xi = x̃ − nh if x − h < x̃ − nh (E.5)

xi = x − 1

2
h if x − h ≥ x̃ − nh (E.6)

xj = x̃ + nh if x + h > x̃ + nh (E.7)

xj = x − 1

2
h if x + h ≤ x̃ + nh (E.8)

It could be argued that the integration step in the right side interval of figure
E.1 should be divided over two cells, n and n+1 and similarly to the left side.
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Figure E.1: Discrete Peskin function if the middle of the curve is located at
0.2 h = 1.0 and n = 2.

However, since the contribution of this last part is very small and the amount
of computational work is rather large, it was chosen to add this contribution
to step n (and step 1 for the left side).

In figure E.2 the relative gas losses from a rising (3.4 mm) air bubble in
water, using the original Peskin function and the integrated Peskin smooth-
ing function are shown. The type of smoothing function hardly effects
the relative gas losses. It was chosen to use the integrated Peskin func-
tion for the VoF and the Front Tracking model, despite the fact that this
function takes some extra computer time compared to the original function
(0.18 µs/call versus 0.10 µs/call on a 1 Ghz AMD PC)



162 APPENDIX E. INTEGRATED PESKIN

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 0.005 0.01 0.015 0.02 0.025

re
la

tiv
e 

ga
s 

vo
lu

m
e 

[%
]

time [s]

integrated peskin function
non integrated Peskin
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Effects of eötvös number and dimensionless liquid volumetric flux on lateral
motion of a bubble in laminar duct flow.
In Multiphase Flow 1995, Proceedings of the Second International Confer-
ence on Multiphase Flow, pages 3–15, 1995.

J. A. Trapp and G. A. Mortensen.
A discrete particle model for bubble-slug two phase flow.
Journal of Computational Physics, 107:367–377, 1993.

G. Tryggvason.
Embedded interface methods.
In Short Courses : Modelling and Computations of Multiphase Flows ETH
(1999).

G. Tryggvason, B. Bunner, O. Ebrat, and W. Tauber.
Computations of multiphase flows by a finite difference/front tracking
method. i. multi-fluid flows.
In 29th Computational Fluid Dynamics Lecture Series, pages 1–44. Von
Karman Institute for fluid Dynamics, March 1998.

G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, and Y.-J. Jan.
A front tracking method for the computations of multiphase flow.
Journal of Compuatational Physics, 169:708–759, 2001.

S. O. Unverdi and G. Tryggvason.
A front-tracking method for viscous, incompressible, multi-fluid flows.
Journal of Computational Physics, 100:25–37, 1992.



BIBLIOGRAPHY 169

R. van Damme and L. Alboul.
Tight triangulations.
Mathematical Methods for Curves and Surfaces, pages 517–526, 1995.

J. van Oord, S. Sinnema, and J. Landskroon.
Development of an ultrasonic measurement technique in liquid metals.
In Conference preprints 2th international congress on the Science & tech-
nology of steelmaking. The intitute of materials, April 2001.

D. L. Youngs.
Time-dependant multi material flow with large fluid distortion.
In K. W. Morton and B. J. Baines, editors, Numerical Methods for Fluid
Dynamics, pages 273–285. Academic, New York, 1982.

D. L. Youngs.
An interface tracking method for a 3d Eulerian hydrodynamics code.
Technical Report AWRE/44/92/35, Atomic Weapons Research Establish-
ment, April 1987.

S. Zaleski.
Multiphase-flow cfd with volume of fluid (vof) methods.
In Short Courses : Modelling and Computations of Multiphase Flows ETH
(1999).



170 BIBLIOGRAPHY



Curriculum Vitae

Michiel Gunsing werd geboren op 17 december 1971 in IJsselstein. Na het
lager onderwijs in Wessem werd met goed gevolg het VWO doorlopen aan
de scholengemenschap st. Ursula te Horn.

In augustus 1990 begon hij zijn studie Chemische technologie aan de Uni-
versiteit Twente die in 1996 werd afgerond met een afstudeeropdracht bij de
groep proceskunde en het behalen van de ingenieurs (ir.) titel.

Na zijn studie trad hij in dienst bij PURAC biochem bv alwaar hij als GMP
validatiespecialist de kwaliteit van de pharmaceutische procesinstallaties do-
cumenteerde.

In september 1998 begon Michiel alsnog aan een promotieproject bij de vak-
groep proceskunde o.l.v W.P.M van Swaaij. Gaande het project werd deze
groep gesplitst in een groep Ontwerp Ontwikkeling van Industriele Projecten
(OOIP) o.l.v. G. Versteeg en Fundamentele Aspecten van de Proceskunde
(FAP) o.l.v. J.A.M. Kuipers, alwaar het project werd voortgezet en afgerond.

Op 23 juni 2000 trouwde hij met Isabel van Beckum. Op 20 maart 2001
werd hun dochter Emma geboren en twee jaar later op 29 maart 2003 volgde
Cecile.

Vanaf 16 september 2002 is Michiel in diens bij NIZO food research als pro-
jectleider predicive modelling.

171



172 CURRICULUM VITAE



Dankwoord

In de afgelopen vijf en een half jaar is er erg veel werk verzet dat uitein-
delijk heeft geleid tot dit proefschrift. Er is een persoon die het aan elkaar
geschreven heeft en zijn naam op dit boekje heeft gezet, maar een proefschrift
komt niet tot stand zonder de medewerking van velen die op een of andere
manier een bijdrage hebben geleverd.

Mijn dank gaat uit naar Hans Kuipers voor zijn begeleiding, discussies en cor-
rectiewerk. Ook Martin van Sint Annaland als begeleider. Martin ondanks
je late instap in dit project is het je gelukt op niveau mee te discussieren.

Dank ook aan alle collega computeraars die inhoudelijk hebben bijgedragen
aan de inhoud van dit werk: Mathijs, Arnoud, Esther, Bob en later ook
Albert, Jeroen en Ji. Met Mathijs en Arnoud heb ik tijden een ’eigen’ kan-
toor gedeeld waar zebravinken en de rode klapper voor de nodige afleiding
zorgden. Goede herinneringen heb ik aan aan de zeilweekenden en de bijbe-
horende barbecues.

Ook dank aan Wim van Swaaij. Onze ontmoeting waren laag in aantal maar
hoog van kwaliteit.

Een groot deel van met name het experimentele werk dat helaas niet tot dit
boekje is doorgedrongen is door de studenten verricht die bij mij afstudeerden
een prakticum opdracht vervulden of anderszinds bij mijn project betrokken
waren. Albert Bokkers, Leobert van der Groep, Ciske Dillerop, François
Broust, Jeroen van Schagen en Bob Lefeber. Allen bedankt.

Voor de technische ondersteuning kon ik altijd terugvallen op een goede ba-
sis. Benno, Wim, Gerrit, Henk-Jan, Robert voor de experimentele zaken
en de mannen van SGA voor hun ondersteuning met het grote computerma-
terieel. De SGI machines en het linux cluster. Jan, Joachim, Gilbert en Bert.

173



174 DANKWOORD

Allemaal bedankt!

CORUS wil ik danken voor hun financiële ondersteuning die dit project mo-
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